- -

New results regarding the lattice of uniform topologies on C(X)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New results regarding the lattice of uniform topologies on C(X)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pichardo-Mendoza, Roberto es_ES
dc.contributor.author Ríos-Herrejón, Alejandro es_ES
dc.date.accessioned 2023-05-02T07:01:23Z
dc.date.available 2023-05-02T07:01:23Z
dc.date.issued 2023-04-05
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/193027
dc.description.abstract [EN] For a Tychonoff space X, the lattice UX  was introduced in L. A. Pérez-Morales, G. Delgadillo-Piñón, and R. Pichardo-Mendoza, The lattice of uniform topologies on C(X), Questions and Answers in General Topology  39 (2021), 65-71. In the present paper we continue the study of UX. To be specific, the present paper deals, in its first half, with structural and categorical properties of UX, while in its second part focuses on cardinal characteristics of the lattice and how these relate to some cardinal functions of the space X. es_ES
dc.description.sponsorship The research of the second author was supported by CONACyT grant no. 814282. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Lattice of uniform topologies es_ES
dc.subject Tychonoff spaces es_ES
dc.subject Order-isomorphisms es_ES
dc.subject Cardinal characteristics es_ES
dc.title New results regarding the lattice of uniform topologies on C(X) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2023.18738
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT// 814282 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Pichardo-Mendoza, R.; Ríos-Herrejón, A. (2023). New results regarding the lattice of uniform topologies on C(X). Applied General Topology. 24(1):169-185. https://doi.org/10.4995/agt.2023.18738 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2023.18738 es_ES
dc.description.upvformatpinicio 169 es_ES
dc.description.upvformatpfin 185 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\18738 es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references R. Engelking, General Topology, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. es_ES
dc.description.references A. Hajnal and I. Juhász, Discrete subspaces of topological spaces, II, Indag. Math. 71, no. 1 (1970), 18-30. https://doi.org/10.1016/1385-7258(69)90022-5 es_ES
dc.description.references R. Hodel, Cardinal Functions I, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan, eds., Amsterdam (1984), 1-61. https://doi.org/10.1016/B978-0-444-86580-9.50004-5 es_ES
dc.description.references R. Hodel, The number of closed subsets of a topological space, Canadian Journal of Mathematics 30, no. 2 (1978), 301-314. https://doi.org/10.4153/CJM-1978-027-7 es_ES
dc.description.references T. Jech, Set Theory. The third millenium edition, revised and expanded, Springer Monograph in Mathematics, Springer-Verlag Berlin Heidelberg, 2003. es_ES
dc.description.references S. Koppelberg, General Theory of Boolean Algebras, in: Handbook of Boolean algebras, J. D. Monk and R. Bonnet, eds., North-Holland, Amsterdam, 1989. es_ES
dc.description.references K. Kunen, Set theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam, 1980. es_ES
dc.description.references R. E. Larson and J. A. Susan, The lattice of topologies: A survey, The Rocky Mountain Journal of Mathematics 5, no. 2 (1975), 177-198. https://doi.org/10.1216/RMJ-1975-5-2-177 es_ES
dc.description.references L. A. Pérez-Morales, G. Delgadillo-Piñón and R. Pichardo-Mendoza, The lattice of uniform topologies on C(X), Questions and Answers in General Topology 39 (2021), 65-71. es_ES
dc.description.references R. Pichardo-Mendoza, Á. Tamariz-Mascarúa and H. Villegas-Rodríguez, Pseudouniform topologies on C(X) given by ideals, Comment. Math. Univ. Carolin. 54, no. 4 (2013), 557-577. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem