- -

Control basado en linealización por realimentación de un convertidor CC-CC con puentes duales activos alimentando una carga de potencia constante

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control basado en linealización por realimentación de un convertidor CC-CC con puentes duales activos alimentando una carga de potencia constante

Mostrar el registro completo del ítem

Rodríguez, F.; Garrido, DO.; Núñez, RO.; Oggier, GG.; García, GO. (2023). Control basado en linealización por realimentación de un convertidor CC-CC con puentes duales activos alimentando una carga de potencia constante. Revista Iberoamericana de Automática e Informática industrial. https://doi.org/10.4995/riai.2023.18546

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/194804

Ficheros en el ítem

Metadatos del ítem

Título: Control basado en linealización por realimentación de un convertidor CC-CC con puentes duales activos alimentando una carga de potencia constante
Otro titulo: Feedback Linearization Control of a Dual Active Bridge Converter Feeding a Constant Power Load
Autor: Rodríguez, Federico Garrido, Daniel Oscar Núñez, Rubén Orlando Oggier, Germán Gustavo García, Guillermo Oscar
Fecha difusión:
Resumen:
[ES] Este trabajo presenta una estrategia de control basada en la técnica de linealización por realimentación para regular la tensión a bornes de una carga de potencia constante alimentada por un Convertidor con Puentes ...[+]


[EN] This paper presents a control strategy based on the feedback linearization technique to regulate the voltage at the terminals of a constant power load fed by a Dual Active Bridge (DAB) Converter. A nonlinear change ...[+]
Palabras clave: Dual active bridge converter , Power electronics , Nonlinear control , Feedback linearization , Constant power load , Convertidor CC-CC con puentes duales activos , Electrónica de potencia , Control no lineal , Linealización por realimentación , Carga de potencia constante
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2023.18546
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2023.18546
Agradecimientos:
El presente trabajo fue soportado por la Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto (SeCyT, UNRC), el FONCyT de la Agencia Nacional de Promoción Científica y Tecnológica (FONCyT) la Red ...[+]
Tipo: Artículo

References

Alhurayyis, I., Elkhateb, A., John Morrow, D., 2021. Isolated and Non-Isolated DC-to-DC Converters for Medium Voltage DC Networks: A Review. IEEE Trans. Emerg. Sel. Topics Power Electron. 9 (6), 7486-7500. https://doi.org/10.1109/JESTPE.2020.3028057

Arora, S., Balsara, P., Bhatia, D., 2019. Input-output linearization of a boost converter with mixed load (constant voltage load and constant power load). IEEE Trans. Power Electron. 34 (1), 815-825. https://doi.org/10.1109/TPEL.2018.2813324

Bacha, S., Munteanu, I., Bratcu, A. I., 2014. Power Electronic Converters Modelling and Control. Springer. https://doi.org/10.1007/978-1-4471-5478-5 [+]
Alhurayyis, I., Elkhateb, A., John Morrow, D., 2021. Isolated and Non-Isolated DC-to-DC Converters for Medium Voltage DC Networks: A Review. IEEE Trans. Emerg. Sel. Topics Power Electron. 9 (6), 7486-7500. https://doi.org/10.1109/JESTPE.2020.3028057

Arora, S., Balsara, P., Bhatia, D., 2019. Input-output linearization of a boost converter with mixed load (constant voltage load and constant power load). IEEE Trans. Power Electron. 34 (1), 815-825. https://doi.org/10.1109/TPEL.2018.2813324

Bacha, S., Munteanu, I., Bratcu, A. I., 2014. Power Electronic Converters Modelling and Control. Springer. https://doi.org/10.1007/978-1-4471-5478-5

Bahmani, M. A., Thiringer, T., 2015. Accurate evaluation of leakage inductance in high-frequency transformers using an improved frequency-dependent expression. IEEE Trans. Power Electron. 30 (10), 5738-5745. https://doi.org/10.1109/TPEL.2014.2371057

Buso, S., Mattavelli, P., 2015. Digital control in power electronics, 2nd edition. Vol. 5. https://doi.org/10.2200/S00637ED1V01Y201503PEL007

Cespedes, M., Xing, L., Sun, J., 2011. Constant-power load system stabilization by passive damping. IEEE Trans. Power Electron. 26 (7), 1832-1836. https://doi.org/10.1109/TPEL.2011.2151880

Chen, L., Gao, F., Shen, K., Wang, Z., Tarisciotti, L., Wheeler, P., Dragicevic, T., 2020. Predictive Control Based DC Microgrid Stabilization with the Dual Active Bridge Converter. IEEE Trans. Ind. Electron. 67 (10), 8944-8956. https://doi.org/10.1109/TIE.2020.2965460

D. Doncker, R., Divan, D. M., Kheraluwala, M. H., 1991. A three-phase softswitched high-power-density DC/DC converter for high-power applications. IEEE Trans. Ind. Appl. 27 (1), 63-73. https://doi.org/10.1109/28.67533

De Din, E., Siddique, H. A. B., Cupelli, M., Monti, A., De Doncker, R. W., 2018. Voltage Control of Parallel-Connected Dual-Active Bridge Converters for Shipboard Applications. IEEE Trans. Emerg. Sel. Topics Power Electron. 6 (2), 664-673. https://doi.org/10.1109/JESTPE.2017.2786350

ElMenshawy, M., Massoud, A., 2020. Modular isolated dc-dc converters for ultra-fast ev chargers: A generalized modeling and control approach. Energies 13 (10). https://doi.org/10.3390/en13102540

Emadi, A., Khaligh, A., Rivetta, C. H., Williamson, G. A., 2006. Constant power loads and negative impedance instability in automotive systems: Definition, modeling, stability, and control of power electronic converters and motor drives. IEEE Trans. Veh. Technol. 55 (4), 1112-1125. https://doi.org/10.1109/TVT.2006.877483

Gammeter, C., Krismer, F., Kolar, J. W., 2016. Comprehensive Conceptualization, Design, and Experimental Verification of a Weight-Optimized All-SiC 2 kV/700 V DAB for an Airborne Wind Turbine. IEEE Trans. Emerg. Sel. Topics Power Electron. 4 (2), 638-656. https://doi.org/10.1109/JESTPE.2015.2459378

Gomez Jorge, S., Solsona, J., Busada, C. A., 2022. Nonlinear Control of a Two-Stage Single Phase DC/AC Converter. IEEE Trans. Emerg. Sel. Topics Power Electron., 1-1. https://doi.org/10.1109/JESTIE.2022.3151003

Guan, Y., Xie, Y., Wang, Y., Liang, Y., Wang, X., 2021. An Active Damping Strategy for Input Impedance of Bidirectional Dual Active Bridge DC-DC Converter: Modelling, Shaping, Design and Experiment. IEEE Trans. Ind. Electron. 68 (2), 1263-1274. https://doi.org/10.1109/TIE.2020.2969126

Hossain, E., Perez, R., Nasiri, A., Padmanaban, S., 2018. A Comprehensive Review on Constant Power Loads Compensation Techniques. IEEE Access 6 (c), 33285-33305. https://doi.org/10.1109/ACCESS.2018.2849065

Isidori, A., 1995. Nonlinear Control Systems, 3rd Edition. Springer. https://doi.org/10.1007/978-1-84628-615-5

Li, Y., Jia, P., Zheng, T. Q., 2015. Active damping method to reduce the output impedance of the DC - DC converters. IET Power Electron. 8 (1), 88-95. https://doi.org/10.1049/iet-pel.2013.0911

Lucas, K. E., Pagano, D. J., Plaza, D. A., Vaca-Benavides, D. A., R'ıos, S. J., 2020. Robust feedback linearization control for DAB converter feeding a CPL. IFAC-PapersOnLine 53 (2), 13402-13409. https://doi.org/10.1016/j.ifacol.2020.12.178

Mueller, J. A., Kimball, J. W., 2018. An Improved Generalized Average Model of DC-DC Dual Active Bridge Converters. IEEE Trans. Power Electron. 33 (11), 9975-9988. https://doi.org/10.1109/TPEL.2018.2797966

Oggier, G., García, G. O., Oliva, A. R., 2011. Modulation strategy to operate the dual active bridge DC-DC converter under soft switching in the whole operating range. IEEE Trans. Power Electron. 26 (4), 1228-1236. https://doi.org/10.1109/TPEL.2010.2072966

Oggier, G. G., Ordonez, M., Galvez, J. M., Luchino, F., 2014. Fast transient boundary control and steady-state operation of the dual active bridge converter using the natural switching surface. IEEE Trans. Power Electron. 29 (2), 946-957. https://doi.org/10.1109/TPEL.2013.2256150

Qin, H., Kimball, J. W., 2014. Closed-loop control of DC-DC dual-activebridge converters driving single-phase inverters. IEEE Trans. Power Electron. 29 (2), 1006-1017. https://doi.org/10.1109/TPEL.2013.2257859

Riccobono, A., Cupelli, M., Monti, A., Santi, E., Roinila, T., Abdollahi, H., Arrua, S., Dougal, R. A., 2017. Stability of shipboard dc power distribution. IEEE Electrific. Mag. 5 (3), 55-67. https://doi.org/10.1109/MELE.2017.2718858

Rodríguez, F., Garrido, D., Núñez, R., Oggier, G., García, G., 2021. Modelado dinamico y de estado estacionario para la conexión modular entrada serie - salida serie de convertidores con puentes duales activos. Revista Iberoamericana de Automatica e Informática industrial 0 (0). https://doi.org/10.4995/riai.2021.14866

Ríos, S. J., Pagano, D. J., Lucas, K. E., 2021. Bidirectional power sharing for dc microgrid enabled by dual active bridge dc-dc converter. Energies 14 (2). https://doi.org/10.3390/en14020404

Severns, R., Bloom, G., 1985. Modern DC-to-DC switchmode power converter circuits. Van Nostrand Reinhold electrical/computer science and engineering series. Van Nostrand Reinhold Co. https://doi.org/10.1007/978-94-011-8085-6

Siddique, H. A. B., De Doncker, R. W., 2018. Evaluation of DC Collector-Grid Configurations for Large Photovoltaic Parks. IEEE Trans. Power Deliv. 33 (1), 311-320. https://doi.org/10.1109/TPWRD.2017.2702018

Slotine, J., Li, W., 1991. Applied Nonlinear Control. Prentice Hall.

Solsona, J. A., Gomez-Jorge, S., Busada, C. A., 2015. Nonlinear Control of a Buck Converter Which Feeds a Constant Power Load. IEEE Trans. Power Electron. 30 (12), 7193-7201. https://doi.org/10.1109/TPEL.2015.2392371

Song, W., Hou, N., Wu, M., 2018. Virtual Direct Power Control Scheme of Dual Active Bridge DC-DC Converters for Fast Dynamic Response. IEEE Trans. Power Electron. 33 (2), 1750-1759. https://doi.org/10.1109/TPEL.2017.2682982

Sun, Y., Zhu, J., Fu, C., Chen, Z., 2021. Decoupling Control of Cascaded Power Electronic Transformer based on Feedback Exact Linearization. IEEE Journal of Emerging and Selected Topics in Power Electronics 6777 (c). https://doi.org/10.1109/JESTPE.2021.3069208

Xu, Q., Vafamand, N., Chen, L., Dragicevic, T., Xie, L., Blaabjerg, F., 2021. Review on Advanced Control Technologies for Bidirectional DC/DC Converters in DC Microgrids. IEEE Trans. Emerg. Sel. Topics Power Electron. 9 (2), 1205-1221. https://doi.org/10.1109/JESTPE.2020.2978064

Yang, S., Wang, P., Tang, Y., 2018. Feedback Linearization-Based Current Control Strategy for Modular Multilevel Converters. IEEE Trans. Power Electron. 33 (1), 161-174. https://doi.org/10.1109/TPEL.2017.2662062

Zhang, J., Ouyang, Z., Duffy, M. C., Andersen, M. A. E., Hurley, W. G., 2014. Leakage inductance calculation for planar transformers with a magnetic shunt. IEEE Transactions on Industry Applications 50 (6), 4107-4112. https://doi.org/10.1109/TIA.2014.2322140

Zhang, K., Chen, W., Cao, X., Pan, P., Azeem, S. W., Qiao, G., Deng, F., 2020. Accurate calculation and sensitivity analysis of leakage inductance of highfrequency transformer with litz wire winding. IEEE Trans. Power Electron. 35 (4), 3951-3962. https://doi.org/10.1109/TPEL.2019.2936523

Zhang, K., Shan, Z., Jatskevich, J., mar 2017. Large- and Small-Signal AverageValue Modeling of Dual-Active-Bridge DC-DC Converter Considering Power Losses. IEEE Trans. Power Electron. 32 (3), 1964-1974. https://doi.org/10.1109/TPEL.2016.2555929

Zhou, H., Khambadkone, A. M., 2009. Hybrid modulation for dual-active bridge bidirectional converter with extended power range for ultracapacitor application. IEEE Trans. Ind. Appl. 45 (4), 1434-1442. https://doi.org/10.1109/TIA.2009.2023493

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem