- -

Nutritional and antioxidant changes in lentils and quinoa through fungal solid-state fermentation with Pleurotus ostreatus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nutritional and antioxidant changes in lentils and quinoa through fungal solid-state fermentation with Pleurotus ostreatus

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez-García, Janaina Madelein es_ES
dc.contributor.author Asensio-Grau, Andrea es_ES
dc.contributor.author García Hernández, Jorge es_ES
dc.contributor.author Heredia Gutiérrez, Ana Belén es_ES
dc.contributor.author Andrés Grau, Ana María es_ES
dc.date.accessioned 2023-07-12T18:00:47Z
dc.date.available 2023-07-12T18:00:47Z
dc.date.issued 2022-05-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194865
dc.description.abstract [EN] Solid-state fermentation (SSF) may be a suitable bioprocess to produce protein-vegetal ingredients with increased nutritional and functional value. This study assessed changes in phenol content, antinutrient content, biomass production and protein production resulting from the metabolic activity of Pleurotus ostreatus, an edible fungus, in lentils and quinoa over 14 days of SSF. The impact of particle size on these parameters was also assessed because the process was conducted in both seeds and flours. Fungus biomass increased during fermentation, reaching 30.0 +/- 1.4 mg/g dry basis and 32 +/- 3 mg/g dry basis in lentil grain and flour and 52.01 +/- 1.08 mg/g dry basis and 45 +/- 2 mg/g dry basis in quinoa seeds and flour after 14 days of SSF. Total protein content also increased by 20% to 25% during fermentation, in all cases except lentil flour. However, the soluble protein fraction remained constant. Regarding phytic acid, SSF had a positive impact, with a progressive decrease being higher in flours than in seeds. Regarding antioxidant properties, autoclaving of the substrates promoted the release of polyphenols, together with antioxidant activity (ABTS, DPPH and FRAP), in all substrates. However, these parameters drastically decreased as fermentation progressed. These results provide scientific knowledge for producing lentil- or quinoa-based ingredients with low antinutrient content enriched with protein fungal biomass. es_ES
dc.description.sponsorship The authors would like to thank the project PID2019-107723RB-C22 funded by the Ministry of Science and Innovation MCIN/AEI/10.1309/501100011033. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Bioresources and Bioprocessing es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Semillas es_ES
dc.subject Harina es_ES
dc.subject Fermentación en estado sólido es_ES
dc.subject Proteína es_ES
dc.subject Polifenoles es_ES
dc.subject Antinutrientes es_ES
dc.subject.classification MICROBIOLOGIA es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Nutritional and antioxidant changes in lentils and quinoa through fungal solid-state fermentation with Pleurotus ostreatus es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s40643-022-00542-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107723RB-C22/ES/CONCEPTUALIZACION PARA LA CREACION DE ALIMENTOS CON PROTEINAS SOSTENIBLES. OBTENCION DE INGREDIENTES RICOS EN PROTEINAS VEGETALES CON DIGESTIBILIDAD Y FUNCIONALIDAD MEJORADAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Sánchez-García, JM.; Asensio-Grau, A.; García Hernández, J.; Heredia Gutiérrez, AB.; Andrés Grau, AM. (2022). Nutritional and antioxidant changes in lentils and quinoa through fungal solid-state fermentation with Pleurotus ostreatus. Bioresources and Bioprocessing. 9(51):1-12. https://doi.org/10.1186/s40643-022-00542-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s40643-022-00542-2 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 51 es_ES
dc.identifier.eissn 2197-4365 es_ES
dc.relation.pasarela S\465003 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Aguilera Y, Dueñas M, Estrella I et al (2010) Evaluation of phenolic profile and antioxidant properties of pardina lentil as affected by industrial dehydration. J Agric Food Chem 58:10101–10108. https://doi.org/10.1021/jf102222t es_ES
dc.description.references Aidoo KE, Hendry R, Wood BJB (1981) Estimation of fungal growth in a solid state fermentation system. Eur J Appl Microbiol Biotechnol 12:6–9 es_ES
dc.description.references AOAC (2000) Official methods of analysis of AOAC International. Association of Official Analysis Chemists International, Arlington es_ES
dc.description.references Asensio-Grau A, Calvo-Lerma J, Heredia A, Andrés A (2020) Enhancing the nutritional profile and digestibility of lentil flour by solid state fermentation with Pleurotus ostreatus. Food Funct 11:7905–7912. https://doi.org/10.1039/d0fo01527j es_ES
dc.description.references Atlı B, Yamaç M, Yıldız Z, Şőlener M (2019) Solid state fermentation optimization of Pleurotus ostreatus for lovastatin production. Pharm Chem J 53:858–864. https://doi.org/10.1007/s11094-019-02090-0 es_ES
dc.description.references Becerra-Tomás N, Papandreou C, Salas-Salvadó J (2019) Legume consumption and cardiometabolic health. Adv Nutr 10:S437–S450. https://doi.org/10.1093/advances/nmz003 es_ES
dc.description.references Bei Q, Liu Y, Wang L et al (2017) Improving free, conjugated, and bound phenolic fractions in fermented oats (Avena sativa L.) with Monascus anka and their antioxidant activity. J Funct Foods 32:185–194. https://doi.org/10.1016/J.JFF.2017.02.028 es_ES
dc.description.references Bohn T, Davidsson L, Walczyk T, Hurrell RF (2004) Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans. Am J Clin Nutr 79:418–423 es_ES
dc.description.references Bouchenak M, Lamri-Senhadji M (2013) Nutritional quality of legumes, and their role in cardiometabolic risk prevention: a review. J Med Food 16:185–198. https://doi.org/10.1089/JMF.2011.0238 es_ES
dc.description.references Brejnholt SM, Dionisio G, Glitsoe V et al (2011) The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin. J Sci Food Agric 91:1398–1405. https://doi.org/10.1002/jsfa.4324 es_ES
dc.description.references Briante R, Febbraio F, Nucci R (2003) Antioxidant properties of low molecular weight phenols present in the Mediterranean diet. J Agric Food Chem 51:6975–6981. https://doi.org/10.1021/jf034471r es_ES
dc.description.references Bryngelsson S, Dimberg LH, Kamal-Eldin A (2002) Effects of commercial processing on levels of antioxidants in oats (Avena sativa L.). J Agric Food Chem 50:1890–1896. https://doi.org/10.1021/jf011222z es_ES
dc.description.references Cai S, Wang O, Wu W et al (2012) Comparative study of the effects of solid-state fermentation with three filamentous fungi on the total phenolics content (TPC), flavonoids, and antioxidant activities of subfractions from oats (Avena sativa L.). J Agric Food Chem 60:507–513. https://doi.org/10.1021/jf204163a es_ES
dc.description.references Castro-Alba V, Lazarte CE, Perez-Rea D et al (2019) Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. J Sci Food Agric 99:5239–5248. https://doi.org/10.1002/jsfa.9793 es_ES
dc.description.references Chang CH, Lin HY, Chang CY, Liu YC (2006) Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J Food Eng 77:478–485. https://doi.org/10.1016/J.JFOODENG.2005.06.061 es_ES
dc.description.references Clemente A, Jimenez-Lopez JC (2020) Introduction to the special issue: legumes as food ingredient: characterization, processing, and applications. Foods 9:1525. https://doi.org/10.3390/FOODS9111525 es_ES
dc.description.references Couto SR, Sanromán MÁ (2006) Application of solid-state fermentation to food industry—a review. J Food Eng 76:291–302. https://doi.org/10.1016/J.JFOODENG.2005.05.022 es_ES
dc.description.references Devi J, Sanwal SK, Koley TK et al (2019) Variations in the total phenolics and antioxidant activities among garden pea (Pisum sativum L.) genotypes differing for maturity duration, seed and flower traits and their association with the yield. Sci Hortic 244:141–150. https://doi.org/10.1016/J.SCIENTA.2018.09.048 es_ES
dc.description.references Dhull SB, Punia S, Kidwai MK et al (2020) Solid-state fermentation of lentil (Lens culinaris L.) with Aspergillus awamori: effect on phenolic compounds, mineral content, and their bioavailability. Legume Sci 2:e37. https://doi.org/10.1002/LEG3.37 es_ES
dc.description.references Ergun SO, Urek RO (2017) Production of ligninolytic enzymes by solid state fermentation using Pleurotus ostreatus. Ann Agrarian Sci 15:273–277. https://doi.org/10.1016/J.AASCI.2017.04.003 es_ES
dc.description.references Espinosa-Páez E, Alanis-Guzmán MG, Hernández-Luna CE et al (2017) Increasing antioxidant activity and protein digestibility in Phaseolus vulgaris and Avena sativa by fermentation with the Pleurotus ostreatus Fungus. Molecules 22:2275. https://doi.org/10.3390/MOLECULES22122275 es_ES
dc.description.references Febles CI, Arias A, Hardisson A et al (2002) Phytic acid level in wheat flours. J Cereal Sci 36:19–23. https://doi.org/10.1006/JCRS.2001.0441 es_ES
dc.description.references Fukumoto LR, Mazza G (2000) Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem 48:3597–3604. https://doi.org/10.1021/jf000220w es_ES
dc.description.references Gallego M, Arnal M, Barat JM, Talens P (2020) Effect of cooking on protein digestion and antioxidant activity of different legume pastes. Foods 10:47. https://doi.org/10.3390/FOODS10010047 es_ES
dc.description.references Garrido-Galand S, Asensio-Grau A, Calvo-Lerma J et al (2021) The potential of fermentation on nutritional and technological improvement of cereal and legume flours: a review. Food Res Int 145:110398. https://doi.org/10.1016/J.FOODRES.2021.110398 es_ES
dc.description.references Gebru YA, Sbhatu DB (2020) Effects of fungi-mediated solid-state fermentation on phenolic contents and antioxidant activity of brown and white teff (Eragrostis tef (Zucc.) Trotter) grains. J Food Qual. https://doi.org/10.1155/2020/8819555 es_ES
dc.description.references Gupta S, Lee JJL, Chen WN (2018) Analysis of improved nutritional composition of potential functional food (Okara) after probiotic solid-state fermentation. J Agric Food Chem 66:5373–5381. https://doi.org/10.1021/acs.jafc.8b00971 es_ES
dc.description.references Guttieri MJ, Peterson KM, Souza EJ (2006) Milling and baking quality of low phytic acid wheat. Crop Sci 46:2403–2408. https://doi.org/10.2135/cropsci2006.03.0137 es_ES
dc.description.references Haug W, Lantzsch H-J (1983) Sensitive method for the rapid determination of phytate in cereals and cereal products. J Sci Food Agric 34:1423–1426. https://doi.org/10.1002/JSFA.2740341217 es_ES
dc.description.references Hídvégi M, Lásztity R (2002) Phytic acid content of cereals and legumes and interaction with proteins. Periodica Polytech Chem Eng 46:59–64 es_ES
dc.description.references Hurrell RF, Reddy MB, Juillerat M-A, Cook JD (2003) Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Am J Clin Nutr 77:1213–1219 es_ES
dc.description.references Karimi S, Ferreira JA, Taherzadeh MJ (2021) The application of fungal biomass as feed. In: Encyclopedia of mycology. Elsevier, pp 601–612 es_ES
dc.description.references Khazaei H, Subedi M, Nickerson M et al (2019) Seed protein of lentils: current status, progress, and food applications. Foods 8:391. https://doi.org/10.3390/foods8090391 es_ES
dc.description.references Liang J, Han BZ, Nout MJR, Hamer RJ (2008) Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chem 110:821–828. https://doi.org/10.1016/J.FOODCHEM.2008.02.064 es_ES
dc.description.references Limón RI, Peñas E, Torino MI et al (2015) Fermentation enhances the content of bioactive compounds in kidney bean extracts. Food Chem 172:343–352. https://doi.org/10.1016/J.FOODCHEM.2014.09.084 es_ES
dc.description.references Liu X, Kokare C (2017) Microbial enzymes of use in industry. In: Brahmachari G, Demain AL, Adro JL (eds) Biotechnology of microbial enzymes. Elsevier Inc, Amsterdam, pp 267–298. https://doi.org/10.1016/B978-0-12-803725-6.00011-X es_ES
dc.description.references Madapathage Dona A (2011) Enhancing antioxidant activity and extractability of bioactive compounds of wheat bran using thermal treatments. University of Manitoba, Winnipeg es_ES
dc.description.references Magro AEA, Silva LC, Rasera GB et al (2019) Solid-state fermentation as an efficient strategy for the biotransformation of lentils: enhancing their antioxidant and antidiabetic potentials. Bioresources and Bioprocessing 6:1–9. https://doi.org/10.1186/s40643-019-0273-5 es_ES
dc.description.references Marathe SA, Rajalakshmi V, Jamdar SN, Sharma A (2011) Comparative study on antioxidant activity of different varieties of commonly consumed legumes in India. Food Chem Toxicol 49:2005–2012. https://doi.org/10.1016/J.FCT.2011.04.039 es_ES
dc.description.references Michael HW, Bultosa G, Pant LM (2011) Nutritional contents of three edible oyster mushrooms grown on two substrates at Haramaya, Ethiopia, and sensory properties of boiled mushroom and mushroom sauce. Int J Food Sci Technol 46:732–738. https://doi.org/10.1111/j.1365-2621.2010.02543.x es_ES
dc.description.references Mora-Uzeta C, Cuevas-Rodríguez E, López-Cervantes J et al (2019) Improvement nutritional/antioxidant properties of underutilized legume tepary bean (Phaseolus acutifolius) by solid state fermentation. Agrociencia 53:987–1003 es_ES
dc.description.references Motta C, Castanheira I, Gonzales GB et al (2019) Impact of cooking methods and malting on amino acids content in amaranth, buckwheat and quinoa. J Food Compos Anal 76:58–65. https://doi.org/10.1016/J.JFCA.2018.10.001 es_ES
dc.description.references Muñoz-Llandes C, Guzmán-Ortiz F, Román-Guitiérrez A, et al (2019) Effect of germination on antinutritional compounds of grains and seeds. Types Process Effects, pp 83–99 es_ES
dc.description.references Muzquiz M, Varela A, Burbano C et al (2012) Bioactive compounds in legumes: pronutritive and antinutritive actions. Implications for nutrition and health. Phytochem Rev 11:227–244. https://doi.org/10.1007/s11101-012-9233-9 es_ES
dc.description.references Nemecek T, von Richthofen JS, Dubois G et al (2008) Environmental impacts of introducing grain legumes into European crop rotations. Eur J Agron 28:380–393. https://doi.org/10.1016/J.EJA.2007.11.004 es_ES
dc.description.references Nkhata SG, Ayua E, Kamau EH, Shingiro JB (2018) Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci Nutr 6:2446–2458. https://doi.org/10.1002/FSN3.846 es_ES
dc.description.references Olukomaiya OO, Adiamo OQ, Fernando WC et al (2020) Effect of solid-state fermentation on proximate composition, anti-nutritional factor, microbiological and functional properties of lupin flour. Food Chem 315:126238. https://doi.org/10.1016/J.FOODCHEM.2020.126238 es_ES
dc.description.references Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84. https://doi.org/10.1016/S1369-703X(02)00121-3 es_ES
dc.description.references Peng W, Tao Z, Ji Chun T (2010) Phytic acid contents of wheat flours from different mill streams. Agric Sci China 9:1684–1688. https://doi.org/10.1016/S1671-2927(09)60266-2 es_ES
dc.description.references Raghavarao KSMS, Ranganathan TV, Karanth NG (2003) Some engineering aspects of solid-state fermentation. Biochem Eng J 13:127–135. https://doi.org/10.1016/S1369-703X(02)00125-0 es_ES
dc.description.references Rocchetti G, Miragoli F, Zacconi C et al (2019) Impact of cooking and fermentation by lactic acid bacteria on phenolic profile of quinoa and buckwheat seeds. Food Res Int 119:886–894. https://doi.org/10.1016/J.FOODRES.2018.10.073 es_ES
dc.description.references Rodrigues Da Luz JM, Dias Nunes M, Albino Paes S et al (2012) Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes. Braz J Microbiol 43:1508–1515 es_ES
dc.description.references Romano A, Ferranti P (2019) Sustainable crops for food security: quinoa (Chenopodium quinoa Willd.). In: Encyclopedia of food security and sustainability, pp 399–402. https://doi.org/10.1016/B978-0-08-100596-5.22573-0 es_ES
dc.description.references Samtiya M, Aluko RE, Dhewa T (2020) Plant food anti-nutritional factors and their reduction strategies: an overview. Food Prod Process Nutr 2:1–14. https://doi.org/10.1186/S43014-020-0020-5 es_ES
dc.description.references Sánchez-Navarro V, Zornoza R, Faz Á, Fernández JA (2020) A comparative greenhouse gas emissions study of legume and non-legume crops grown using organic and conventional fertilizers. Sci Hortic 260:108902. https://doi.org/10.1016/J.SCIENTA.2019.108902 es_ES
dc.description.references Şanlier N, Başar Gökcen B, Ceyhun Sezgin A (2019) Health benefits of fermented foods. Crit Rev Food Sci Nutr 59:506–527. https://doi.org/10.1080/10408398.2017.1383355 es_ES
dc.description.references Sarwar-Gilani G, Wu Xiao C, Cockell KA (2012) Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br J Nutr 108:S315–S332. https://doi.org/10.1017/S0007114512002371 es_ES
dc.description.references Schlemmer U, Frølich W, Prieto RM, Grases F (2009) Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res 53:S330–S375. https://doi.org/10.1002/mnfr.200900099 es_ES
dc.description.references Shi L, Mu K, Arntfield SD, Nickerson MT (2017) Changes in levels of enzyme inhibitors during soaking and cooking for pulses available in Canada. J Food Sci Technol 54:1014–1022. https://doi.org/10.1007/S13197-017-2519-6/TABLES/4 es_ES
dc.description.references Thaipong K, Boonprakob U, Crosby K et al (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19:669–675. https://doi.org/10.1016/J.JFCA.2006.01.003 es_ES
dc.description.references Tomaselli Scotti C, Vergoignan C, Feron G, Durand A (2001) Glucosamine measurement as indirect method for biomass estimation of Cunninghamella elegans grown in solid state cultivation conditions. Biochem Eng J 7:1–5. https://doi.org/10.1016/S1369-703X(00)00090-5 es_ES
dc.description.references Torino MI, Limón RI, Martínez-Villaluenga C et al (2013) Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem 136:1030–1037. https://doi.org/10.1016/J.FOODCHEM.2012.09.015 es_ES
dc.description.references Villaño D, Fernández-Pachón MS, Troncoso AM, García-Parrilla MC (2005) Comparison of antioxidant activity of wine phenolic compounds and metabolites in vitro. Anal Chim Acta 538:391–398. https://doi.org/10.1016/J.ACA.2005.02.016 es_ES
dc.description.references Xiao Y, Xing G, Rui X et al (2014) Enhancement of the antioxidant capacity of chickpeas by solid state fermentation with Cordyceps militaris SN-18. J Funct Foods 10:210–222. https://doi.org/10.1016/J.JFF.2014.06.008 es_ES
dc.description.references Xu L-N, Guo S, Zhang S (2018) Effects of solid-state fermentation with three higher fungi on the total phenol contents and antioxidant properties of diverse cereal grains. FEMS Microbiol Lett 365:fny163. https://doi.org/10.1093/femsle/fny163 es_ES
dc.description.references Zhai FH, Wang Q, Han JR (2015) Nutritional components and antioxidant properties of seven kinds of cereals fermented by the basidiomycete Agaricus blazei. J Cereal Sci 65:202–208. https://doi.org/10.1016/J.JCS.2015.07.010 es_ES
upv.costeAPC 1184,6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem