- -

Proportion constrained weakly supervised histopathology image classification

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Proportion constrained weakly supervised histopathology image classification

Show full item record

Silva-Rodríguez, J.; Schmidt, A.; Sales, MA.; Molina, R.; Naranjo Ornedo, V. (2022). Proportion constrained weakly supervised histopathology image classification. Computers in Biology and Medicine. 147:1-9. https://doi.org/10.1016/j.compbiomed.2022.105714

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/195665

Files in this item

Item Metadata

Title: Proportion constrained weakly supervised histopathology image classification
Author: Silva-Rodríguez, Julio Schmidt, Arne Sales, María A. Molina, Rafael Naranjo Ornedo, Valeriana
UPV Unit: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Issued date:
Abstract:
[EN] Multiple instance learning (MIL) deals with data grouped into bags of instances, of which only the global information is known. In recent years, this weakly supervised learning paradigm has become very popular in ...[+]
Subjects: Multiple instance learning , Histology , Proportion , Inequality constraints , Extended log-barrier
Copyrigths: Reconocimiento (by)
Source:
Computers in Biology and Medicine. (issn: 0010-4825 )
DOI: 10.1016/j.compbiomed.2022.105714
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.compbiomed.2022.105714
Coste APC: 2432,1
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105142RB-C21/ES/CARACTERIZACION DE NEOPLASIAS DE CELULAS FUSIFORMES EN IMAGENES HISTOLOGICAS/
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2020%2F030/
info:eu-repo/grantAgreement/EC/H2020/860627/EU
Thanks:
This work was supported by the Spanish Ministry of Economy and Competitiveness through project PID2019-105142RB-C2. The work of A. Schmidt was funded from the European Union's Horizon 2020 research and innovation programme ...[+]
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record