- -

Proportion constrained weakly supervised histopathology image classification

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Proportion constrained weakly supervised histopathology image classification

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Silva-Rodríguez, Julio es_ES
dc.contributor.author Schmidt, Arne es_ES
dc.contributor.author Sales, María A. es_ES
dc.contributor.author Molina, Rafael es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2023-07-27T18:01:39Z
dc.date.available 2023-07-27T18:01:39Z
dc.date.issued 2022-08 es_ES
dc.identifier.issn 0010-4825 es_ES
dc.identifier.uri http://hdl.handle.net/10251/195665
dc.description.abstract [EN] Multiple instance learning (MIL) deals with data grouped into bags of instances, of which only the global information is known. In recent years, this weakly supervised learning paradigm has become very popular in histological image analysis because it alleviates the burden of labeling all cancerous regions of large Whole Slide Images (WSIs) in detail. However, these methods require large datasets to perform properly, and many approaches only focus on simple binary classification. This often does not match the real-world problems where multi-label settings are frequent and possible constraints must be taken into account. In this work, we propose a novel multi-label MIL formulation based on inequality constraints that is able to incorporate prior knowledge about instance proportions. Our method has a theoretical foundation in optimization with log-barrier extensions, applied to bag-level class proportions. This encourages the model to respect the proportion ordering during training. Extensive experiments on a new public dataset of prostate cancer WSIs analysis, SICAP-MIL, demonstrate that using the prior proportion information we can achieve instance-level results similar to supervised methods on datasets of similar size. In comparison with prior MIL settings, our method allows for similar to 13% improvements in instance-level accuracy, and similar to 3% in the multi-label mean area under the ROC curve at the bag-level. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Economy and Competitiveness through project PID2019-105142RB-C2. The work of A. Schmidt was funded from the European Union's Horizon 2020 research and innovation programme under the Marie SkAodowska Curie grant agreement No 860627 (CLARIFY Project). The hardware NVIDIA DGXA100 used in the experimental part of this work was funded by Generalitat Valenciana/European Union through the European Regional Development Fund (ERDF) of the Valencian Community (IDIFEDER/2020/030). Funding for open access charge: Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers in Biology and Medicine es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Multiple instance learning es_ES
dc.subject Histology es_ES
dc.subject Proportion es_ES
dc.subject Inequality constraints es_ES
dc.subject Extended log-barrier es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Proportion constrained weakly supervised histopathology image classification es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compbiomed.2022.105714 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105142RB-C21/ES/CARACTERIZACION DE NEOPLASIAS DE CELULAS FUSIFORMES EN IMAGENES HISTOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2020%2F030/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/860627/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Silva-Rodríguez, J.; Schmidt, A.; Sales, MA.; Molina, R.; Naranjo Ornedo, V. (2022). Proportion constrained weakly supervised histopathology image classification. Computers in Biology and Medicine. 147:1-9. https://doi.org/10.1016/j.compbiomed.2022.105714 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.compbiomed.2022.105714 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 147 es_ES
dc.identifier.pmid 35753089 es_ES
dc.relation.pasarela S\468199 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
upv.costeAPC 2432,1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem