Mostrar el registro sencillo del ítem
dc.contributor.author | Blanes Zamora, Sergio | es_ES |
dc.contributor.author | Casas, Fernando | es_ES |
dc.contributor.author | Escorihuela-Tomàs, Alejandro | es_ES |
dc.date.accessioned | 2023-09-29T18:04:28Z | |
dc.date.available | 2023-09-29T18:04:28Z | |
dc.date.issued | 2022-04 | es_ES |
dc.identifier.issn | 2158-2491 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/197353 | |
dc.description.abstract | [EN] We explore the applicability of splitting methods involving complex coefficients to solve numerically the time-dependent Schriidinger equation. We prove that a particular class of integrators are conjugate to unitary methods for sufficiently small step sizes when applied to problems defined in the group SU(2). In the general case, the error in both the energy and the norm of the numerical approximation provided by these methods does not possess a secular component over long time intervals, when combined with pseudo-spectral discretization techniques in space. | es_ES |
dc.description.sponsorship | Work supported by Ministerio de Ciencia e Innovacion (Spain) through project PID2019-104927GB-C21/AEI/10.13039/501100011033. A.E.-T. has been additionally funded by the pre-doctoral contract BES-2017-079697 (Spain) . | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Mathematical Sciences | es_ES |
dc.relation.ispartof | Journal of Computational Dynamics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Splitting methods | es_ES |
dc.subject | Unitary problems | es_ES |
dc.subject | Complex coefficients | es_ES |
dc.subject | Preservation properties | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Applying Splitting Methods With Complex Coefficients To The Numerical Integration Of Unitary Problems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3934/jcd.2021022 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104927GB-C21/ES/METODOS DE INTEGRACION GEOMETRICA PARA PROBLEMAS CUANTICOS, MECANICA CELESTE Y SIMULACIONES MONTECARLO I/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PID2019-104927GB-C21//METODOS DE INTEGRACION GEOMETRICA PARA PROBLEMAS CUANTICOS, MECANICA CELESTE Y SIMULACIONES MONTECARLO I/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BES-2017-079697/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | Blanes Zamora, S.; Casas, F.; Escorihuela-Tomàs, A. (2022). Applying Splitting Methods With Complex Coefficients To The Numerical Integration Of Unitary Problems. Journal of Computational Dynamics. 9(2):85-101. https://doi.org/10.3934/jcd.2021022 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3934/jcd.2021022 | es_ES |
dc.description.upvformatpinicio | 85 | es_ES |
dc.description.upvformatpfin | 101 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\485815 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | A. Bandrauk, E. Dehghanian, H. Lu.Complex integration steps in decomposition of quantum exponential evolution operators, <i>Chem. Phys. Lett.</i>, <b>419</b> (2006), 346-350. | es_ES |
dc.description.references | S. Blanes, F. Casas.On the necessity of negative coefficients for operator splitting schemes of order higher than two, <i>Appl. Numer. Math.</i>, <b>54</b> (2005), 23-37. | es_ES |
dc.description.references | S. Blanes and F. Casas, <i>A Concise Introduction to Geometric Numerical Integration</i>, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2016. | es_ES |
dc.description.references | S. Blanes, F. Casas, P. Chartier and A. Escorihuela-Tomàs, On symmetric-conjugate composition methods in the numerical integration of differential equations, arXiv: 2101.04100 (to appear in <i>Math. Comput.</i>). | es_ES |
dc.description.references | S. Blanes, F. Casas, P. Chartier, A. Murua.Optimized high-order splitting methods for some classes of parabolic equations, <i>Math. Comput.</i>, <b>82</b> (2013), 1559-1576. | es_ES |
dc.description.references | S. Blanes, F. Casas, A. Murua.Splitting and composition methods in the numerical integration of differential equations, <i>Bol. Soc. Esp. Mat. Apl.</i>, <b>45</b> (2008), 89-145. | es_ES |
dc.description.references | S. Blanes, F. Casas, A. Murua.Splitting methods with complex coefficients, <i>Bol. Soc. Esp. Mat. Apl.</i>, <b>50</b> (2010), 47-60. | es_ES |
dc.description.references | S. Blanes, P. Moan.Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods, <i>J. Comput. Appl. Math.</i>, <b>142</b> (2002), 313-330. | es_ES |
dc.description.references | F. Casas, P. Chartier, A. Escorihuela-Tomàs, Y. Zhang.Compositions of pseudo-symmetric integrators with complex coefficients for the numerical integration of differential equations, <i>J. Comput. Appl. Math.</i>, <b>381</b> (2021), 113006. | es_ES |
dc.description.references | F. Castella, P. Chartier, S. Descombes, G. Vilmart.Splitting methods with complex times for parabolic equations, <i>BIT Numer. Math.</i>, <b>49</b> (2009), 487-508. | es_ES |
dc.description.references | J. Chambers.Symplectic integrators with complex time steps, <i>Astron. J.</i>, <b>126</b> (2003), 1119-1126. | es_ES |
dc.description.references | S. Flügge, <i>Practical Quantum Mechanics</i>, Springer, 1971. | es_ES |
dc.description.references | A. Galindo and P. Pascual, <i>Quantum Mechanics. I.</i>, Texts and Monographs in Physics. Springer-Verlag, Berlin, 1990. | es_ES |
dc.description.references | F. Goth, Higher order auxiliary field quantum Monte Carlo methods, arXiv: 2009.04491. | es_ES |
dc.description.references | E. Hairer, C. Lubich and G. Wanner, <i>Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations</i>, 2$^{nd}$ edition, Springer-Verlag, 2006. | es_ES |
dc.description.references | E. Hansen, A. Ostermann.Exponential splitting for unbounded operators, <i>Math. Comput.</i>, <b>78</b> (2009), 1485-1496. | es_ES |
dc.description.references | E. Hansen, A. Ostermann.High order splitting methods for analytic semigroups exist, <i>BIT Numer. Math.</i>, <b>49</b> (2009), 527-542. | es_ES |
dc.description.references | C. Lubich, <i>From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis</i>, European Mathematical Society, 2008. | es_ES |
dc.description.references | R. McLachlan, R. Quispel.Splitting methods, <i>Acta Numer.</i>, <b>11</b> (2002), 341-434. | es_ES |
dc.description.references | T. Prosen, I. Pizorn.High order non-unitary split-step decomposition of unitary operators, <i>J. Phys. A: Math. Gen.</i>, <b>39</b> (2006), 5957-5964. | es_ES |
dc.description.references | Q. Sheng, Solving partial differential equations by exponential splitting, <i>IMA J. Numer. Anal.</i>, <b>9</b> (1989), 199-212. | es_ES |
dc.description.references | M. Suzuki.Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, <i>Phys. Lett. A</i>, <b>146</b> (1990), 319-323. | es_ES |
dc.description.references | M. Suzuki.General theory of fractal path integrals with applications to many-body theories and statistical physics, <i>J. Math. Phys.</i>, <b>32</b> (1991), 400-407. | es_ES |