- -

Applying Splitting Methods With Complex Coefficients To The Numerical Integration Of Unitary Problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Applying Splitting Methods With Complex Coefficients To The Numerical Integration Of Unitary Problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blanes Zamora, Sergio es_ES
dc.contributor.author Casas, Fernando es_ES
dc.contributor.author Escorihuela-Tomàs, Alejandro es_ES
dc.date.accessioned 2023-09-29T18:04:28Z
dc.date.available 2023-09-29T18:04:28Z
dc.date.issued 2022-04 es_ES
dc.identifier.issn 2158-2491 es_ES
dc.identifier.uri http://hdl.handle.net/10251/197353
dc.description.abstract [EN] We explore the applicability of splitting methods involving complex coefficients to solve numerically the time-dependent Schriidinger equation. We prove that a particular class of integrators are conjugate to unitary methods for sufficiently small step sizes when applied to problems defined in the group SU(2). In the general case, the error in both the energy and the norm of the numerical approximation provided by these methods does not possess a secular component over long time intervals, when combined with pseudo-spectral discretization techniques in space. es_ES
dc.description.sponsorship Work supported by Ministerio de Ciencia e Innovacion (Spain) through project PID2019-104927GB-C21/AEI/10.13039/501100011033. A.E.-T. has been additionally funded by the pre-doctoral contract BES-2017-079697 (Spain) . es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Mathematical Sciences es_ES
dc.relation.ispartof Journal of Computational Dynamics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Splitting methods es_ES
dc.subject Unitary problems es_ES
dc.subject Complex coefficients es_ES
dc.subject Preservation properties es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Applying Splitting Methods With Complex Coefficients To The Numerical Integration Of Unitary Problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3934/jcd.2021022 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104927GB-C21/ES/METODOS DE INTEGRACION GEOMETRICA PARA PROBLEMAS CUANTICOS, MECANICA CELESTE Y SIMULACIONES MONTECARLO I/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PID2019-104927GB-C21//METODOS DE INTEGRACION GEOMETRICA PARA PROBLEMAS CUANTICOS, MECANICA CELESTE Y SIMULACIONES MONTECARLO I/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2017-079697/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Blanes Zamora, S.; Casas, F.; Escorihuela-Tomàs, A. (2022). Applying Splitting Methods With Complex Coefficients To The Numerical Integration Of Unitary Problems. Journal of Computational Dynamics. 9(2):85-101. https://doi.org/10.3934/jcd.2021022 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3934/jcd.2021022 es_ES
dc.description.upvformatpinicio 85 es_ES
dc.description.upvformatpfin 101 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\485815 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references A. Bandrauk, E. Dehghanian, H. Lu.Complex integration steps in decomposition of quantum exponential evolution operators, <i>Chem. Phys. Lett.</i>, <b>419</b> (2006), 346-350. es_ES
dc.description.references S. Blanes, F. Casas.On the necessity of negative coefficients for operator splitting schemes of order higher than two, <i>Appl. Numer. Math.</i>, <b>54</b> (2005), 23-37. es_ES
dc.description.references S. Blanes and F. Casas, <i>A Concise Introduction to Geometric Numerical Integration</i>, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2016. es_ES
dc.description.references S. Blanes, F. Casas, P. Chartier and A. Escorihuela-Tomàs, On symmetric-conjugate composition methods in the numerical integration of differential equations, arXiv: 2101.04100 (to appear in <i>Math. Comput.</i>). es_ES
dc.description.references S. Blanes, F. Casas, P. Chartier, A. Murua.Optimized high-order splitting methods for some classes of parabolic equations, <i>Math. Comput.</i>, <b>82</b> (2013), 1559-1576. es_ES
dc.description.references S. Blanes, F. Casas, A. Murua.Splitting and composition methods in the numerical integration of differential equations, <i>Bol. Soc. Esp. Mat. Apl.</i>, <b>45</b> (2008), 89-145. es_ES
dc.description.references S. Blanes, F. Casas, A. Murua.Splitting methods with complex coefficients, <i>Bol. Soc. Esp. Mat. Apl.</i>, <b>50</b> (2010), 47-60. es_ES
dc.description.references S. Blanes, P. Moan.Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods, <i>J. Comput. Appl. Math.</i>, <b>142</b> (2002), 313-330. es_ES
dc.description.references F. Casas, P. Chartier, A. Escorihuela-Tomàs, Y. Zhang.Compositions of pseudo-symmetric integrators with complex coefficients for the numerical integration of differential equations, <i>J. Comput. Appl. Math.</i>, <b>381</b> (2021), 113006. es_ES
dc.description.references F. Castella, P. Chartier, S. Descombes, G. Vilmart.Splitting methods with complex times for parabolic equations, <i>BIT Numer. Math.</i>, <b>49</b> (2009), 487-508. es_ES
dc.description.references J. Chambers.Symplectic integrators with complex time steps, <i>Astron. J.</i>, <b>126</b> (2003), 1119-1126. es_ES
dc.description.references S. Flügge, <i>Practical Quantum Mechanics</i>, Springer, 1971. es_ES
dc.description.references A. Galindo and P. Pascual, <i>Quantum Mechanics. I.</i>, Texts and Monographs in Physics. Springer-Verlag, Berlin, 1990. es_ES
dc.description.references F. Goth, Higher order auxiliary field quantum Monte Carlo methods, arXiv: 2009.04491. es_ES
dc.description.references E. Hairer, C. Lubich and G. Wanner, <i>Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations</i>, 2$^{nd}$ edition, Springer-Verlag, 2006. es_ES
dc.description.references E. Hansen, A. Ostermann.Exponential splitting for unbounded operators, <i>Math. Comput.</i>, <b>78</b> (2009), 1485-1496. es_ES
dc.description.references E. Hansen, A. Ostermann.High order splitting methods for analytic semigroups exist, <i>BIT Numer. Math.</i>, <b>49</b> (2009), 527-542. es_ES
dc.description.references C. Lubich, <i>From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis</i>, European Mathematical Society, 2008. es_ES
dc.description.references R. McLachlan, R. Quispel.Splitting methods, <i>Acta Numer.</i>, <b>11</b> (2002), 341-434. es_ES
dc.description.references T. Prosen, I. Pizorn.High order non-unitary split-step decomposition of unitary operators, <i>J. Phys. A: Math. Gen.</i>, <b>39</b> (2006), 5957-5964. es_ES
dc.description.references Q. Sheng, Solving partial differential equations by exponential splitting, <i>IMA J. Numer. Anal.</i>, <b>9</b> (1989), 199-212. es_ES
dc.description.references M. Suzuki.Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, <i>Phys. Lett. A</i>, <b>146</b> (1990), 319-323. es_ES
dc.description.references M. Suzuki.General theory of fractal path integrals with applications to many-body theories and statistical physics, <i>J. Math. Phys.</i>, <b>32</b> (1991), 400-407. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem