- -

Applying Splitting Methods With Complex Coefficients To The Numerical Integration Of Unitary Problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Applying Splitting Methods With Complex Coefficients To The Numerical Integration Of Unitary Problems

Mostrar el registro completo del ítem

Blanes Zamora, S.; Casas, F.; Escorihuela-Tomàs, A. (2022). Applying Splitting Methods With Complex Coefficients To The Numerical Integration Of Unitary Problems. Journal of Computational Dynamics. 9(2):85-101. https://doi.org/10.3934/jcd.2021022

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/197353

Ficheros en el ítem

Metadatos del ítem

Título: Applying Splitting Methods With Complex Coefficients To The Numerical Integration Of Unitary Problems
Autor: Blanes Zamora, Sergio Casas, Fernando Escorihuela-Tomàs, Alejandro
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Fecha difusión:
Resumen:
[EN] We explore the applicability of splitting methods involving complex coefficients to solve numerically the time-dependent Schriidinger equation. We prove that a particular class of integrators are conjugate to unitary ...[+]
Palabras clave: Splitting methods , Unitary problems , Complex coefficients , Preservation properties
Derechos de uso: Cerrado
Fuente:
Journal of Computational Dynamics. (issn: 2158-2491 )
DOI: 10.3934/jcd.2021022
Editorial:
American Institute of Mathematical Sciences
Versión del editor: https://doi.org/10.3934/jcd.2021022
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104927GB-C21/ES/METODOS DE INTEGRACION GEOMETRICA PARA PROBLEMAS CUANTICOS, MECANICA CELESTE Y SIMULACIONES MONTECARLO I/
info:eu-repo/grantAgreement/MICINN//PID2019-104927GB-C21//METODOS DE INTEGRACION GEOMETRICA PARA PROBLEMAS CUANTICOS, MECANICA CELESTE Y SIMULACIONES MONTECARLO I/
info:eu-repo/grantAgreement/MICINN//BES-2017-079697/
Agradecimientos:
Work supported by Ministerio de Ciencia e Innovacion (Spain) through project PID2019-104927GB-C21/AEI/10.13039/501100011033. A.E.-T. has been additionally funded by the pre-doctoral contract BES-2017-079697 (Spain) .
Tipo: Artículo

References

A. Bandrauk, E. Dehghanian, H. Lu.Complex integration steps in decomposition of quantum exponential evolution operators, <i>Chem. Phys. Lett.</i>, <b>419</b> (2006), 346-350.

S. Blanes, F. Casas.On the necessity of negative coefficients for operator splitting schemes of order higher than two, <i>Appl. Numer. Math.</i>, <b>54</b> (2005), 23-37.

S. Blanes and F. Casas, <i>A Concise Introduction to Geometric Numerical Integration</i>, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2016. [+]
A. Bandrauk, E. Dehghanian, H. Lu.Complex integration steps in decomposition of quantum exponential evolution operators, <i>Chem. Phys. Lett.</i>, <b>419</b> (2006), 346-350.

S. Blanes, F. Casas.On the necessity of negative coefficients for operator splitting schemes of order higher than two, <i>Appl. Numer. Math.</i>, <b>54</b> (2005), 23-37.

S. Blanes and F. Casas, <i>A Concise Introduction to Geometric Numerical Integration</i>, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2016.

S. Blanes, F. Casas, P. Chartier and A. Escorihuela-Tomàs, On symmetric-conjugate composition methods in the numerical integration of differential equations, arXiv: 2101.04100 (to appear in <i>Math. Comput.</i>).

S. Blanes, F. Casas, P. Chartier, A. Murua.Optimized high-order splitting methods for some classes of parabolic equations, <i>Math. Comput.</i>, <b>82</b> (2013), 1559-1576.

S. Blanes, F. Casas, A. Murua.Splitting and composition methods in the numerical integration of differential equations, <i>Bol. Soc. Esp. Mat. Apl.</i>, <b>45</b> (2008), 89-145.

S. Blanes, F. Casas, A. Murua.Splitting methods with complex coefficients, <i>Bol. Soc. Esp. Mat. Apl.</i>, <b>50</b> (2010), 47-60.

S. Blanes, P. Moan.Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods, <i>J. Comput. Appl. Math.</i>, <b>142</b> (2002), 313-330.

F. Casas, P. Chartier, A. Escorihuela-Tomàs, Y. Zhang.Compositions of pseudo-symmetric integrators with complex coefficients for the numerical integration of differential equations, <i>J. Comput. Appl. Math.</i>, <b>381</b> (2021), 113006.

F. Castella, P. Chartier, S. Descombes, G. Vilmart.Splitting methods with complex times for parabolic equations, <i>BIT Numer. Math.</i>, <b>49</b> (2009), 487-508.

J. Chambers.Symplectic integrators with complex time steps, <i>Astron. J.</i>, <b>126</b> (2003), 1119-1126.

S. Flügge, <i>Practical Quantum Mechanics</i>, Springer, 1971.

A. Galindo and P. Pascual, <i>Quantum Mechanics. I.</i>, Texts and Monographs in Physics. Springer-Verlag, Berlin, 1990.

F. Goth, Higher order auxiliary field quantum Monte Carlo methods, arXiv: 2009.04491.

E. Hairer, C. Lubich and G. Wanner, <i>Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations</i>, 2$^{nd}$ edition, Springer-Verlag, 2006.

E. Hansen, A. Ostermann.Exponential splitting for unbounded operators, <i>Math. Comput.</i>, <b>78</b> (2009), 1485-1496.

E. Hansen, A. Ostermann.High order splitting methods for analytic semigroups exist, <i>BIT Numer. Math.</i>, <b>49</b> (2009), 527-542.

C. Lubich, <i>From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis</i>, European Mathematical Society, 2008.

R. McLachlan, R. Quispel.Splitting methods, <i>Acta Numer.</i>, <b>11</b> (2002), 341-434.

T. Prosen, I. Pizorn.High order non-unitary split-step decomposition of unitary operators, <i>J. Phys. A: Math. Gen.</i>, <b>39</b> (2006), 5957-5964.

Q. Sheng, Solving partial differential equations by exponential splitting, <i>IMA J. Numer. Anal.</i>, <b>9</b> (1989), 199-212.

M. Suzuki.Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, <i>Phys. Lett. A</i>, <b>146</b> (1990), 319-323.

M. Suzuki.General theory of fractal path integrals with applications to many-body theories and statistical physics, <i>J. Math. Phys.</i>, <b>32</b> (1991), 400-407.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem