A. Bandrauk, E. Dehghanian, H. Lu.Complex integration steps in decomposition of quantum exponential evolution operators, <i>Chem. Phys. Lett.</i>, <b>419</b> (2006), 346-350.
S. Blanes, F. Casas.On the necessity of negative coefficients for operator splitting schemes of order higher than two, <i>Appl. Numer. Math.</i>, <b>54</b> (2005), 23-37.
S. Blanes and F. Casas, <i>A Concise Introduction to Geometric Numerical Integration</i>, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2016.
[+]
A. Bandrauk, E. Dehghanian, H. Lu.Complex integration steps in decomposition of quantum exponential evolution operators, <i>Chem. Phys. Lett.</i>, <b>419</b> (2006), 346-350.
S. Blanes, F. Casas.On the necessity of negative coefficients for operator splitting schemes of order higher than two, <i>Appl. Numer. Math.</i>, <b>54</b> (2005), 23-37.
S. Blanes and F. Casas, <i>A Concise Introduction to Geometric Numerical Integration</i>, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2016.
S. Blanes, F. Casas, P. Chartier and A. Escorihuela-Tomàs, On symmetric-conjugate composition methods in the numerical integration of differential equations, arXiv: 2101.04100 (to appear in <i>Math. Comput.</i>).
S. Blanes, F. Casas, P. Chartier, A. Murua.Optimized high-order splitting methods for some classes of parabolic equations, <i>Math. Comput.</i>, <b>82</b> (2013), 1559-1576.
S. Blanes, F. Casas, A. Murua.Splitting and composition methods in the numerical integration of differential equations, <i>Bol. Soc. Esp. Mat. Apl.</i>, <b>45</b> (2008), 89-145.
S. Blanes, F. Casas, A. Murua.Splitting methods with complex coefficients, <i>Bol. Soc. Esp. Mat. Apl.</i>, <b>50</b> (2010), 47-60.
S. Blanes, P. Moan.Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods, <i>J. Comput. Appl. Math.</i>, <b>142</b> (2002), 313-330.
F. Casas, P. Chartier, A. Escorihuela-Tomàs, Y. Zhang.Compositions of pseudo-symmetric integrators with complex coefficients for the numerical integration of differential equations, <i>J. Comput. Appl. Math.</i>, <b>381</b> (2021), 113006.
F. Castella, P. Chartier, S. Descombes, G. Vilmart.Splitting methods with complex times for parabolic equations, <i>BIT Numer. Math.</i>, <b>49</b> (2009), 487-508.
J. Chambers.Symplectic integrators with complex time steps, <i>Astron. J.</i>, <b>126</b> (2003), 1119-1126.
S. Flügge, <i>Practical Quantum Mechanics</i>, Springer, 1971.
A. Galindo and P. Pascual, <i>Quantum Mechanics. I.</i>, Texts and Monographs in Physics. Springer-Verlag, Berlin, 1990.
F. Goth, Higher order auxiliary field quantum Monte Carlo methods, arXiv: 2009.04491.
E. Hairer, C. Lubich and G. Wanner, <i>Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations</i>, 2$^{nd}$ edition, Springer-Verlag, 2006.
E. Hansen, A. Ostermann.Exponential splitting for unbounded operators, <i>Math. Comput.</i>, <b>78</b> (2009), 1485-1496.
E. Hansen, A. Ostermann.High order splitting methods for analytic semigroups exist, <i>BIT Numer. Math.</i>, <b>49</b> (2009), 527-542.
C. Lubich, <i>From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis</i>, European Mathematical Society, 2008.
R. McLachlan, R. Quispel.Splitting methods, <i>Acta Numer.</i>, <b>11</b> (2002), 341-434.
T. Prosen, I. Pizorn.High order non-unitary split-step decomposition of unitary operators, <i>J. Phys. A: Math. Gen.</i>, <b>39</b> (2006), 5957-5964.
Q. Sheng, Solving partial differential equations by exponential splitting, <i>IMA J. Numer. Anal.</i>, <b>9</b> (1989), 199-212.
M. Suzuki.Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, <i>Phys. Lett. A</i>, <b>146</b> (1990), 319-323.
M. Suzuki.General theory of fractal path integrals with applications to many-body theories and statistical physics, <i>J. Math. Phys.</i>, <b>32</b> (1991), 400-407.
[-]