- -

Flowability, Rehydration Behaviour and bioactive Compounds of an Orange Powder Product as Affected by Particle Size

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Flowability, Rehydration Behaviour and bioactive Compounds of an Orange Powder Product as Affected by Particle Size

Mostrar el registro completo del ítem

Camacho Vidal, MM.; Silva Espinoza, MA.; Martínez-Navarrete, N. (2022). Flowability, Rehydration Behaviour and bioactive Compounds of an Orange Powder Product as Affected by Particle Size. Food and Bioprocess Technology. 15(3):683-692. https://doi.org/10.1007/s11947-022-02773-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/197771

Ficheros en el ítem

Metadatos del ítem

Título: Flowability, Rehydration Behaviour and bioactive Compounds of an Orange Powder Product as Affected by Particle Size
Autor: Camacho Vidal, Mª Mar Silva Espinoza, Marilú Andrea Martínez-Navarrete, Nuria
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
[EN] By offering a powder that ensures the healthy value of the fruits, a proper flowability and adequate viscosity after rehydration, there could be an opportunity to promote fruit consumption. The particle size is of ...[+]
Palabras clave: Angle of repose , Bulk and tapped densities , Wettability , Viscosity , Vitamin C , Flavonoids
Derechos de uso: Reconocimiento (by)
Fuente:
Food and Bioprocess Technology. (issn: 1935-5130 )
DOI: 10.1007/s11947-022-02773-9
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11947-022-02773-9
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-89251-R/ES/IMPACTO DE LAS CONDICIONES DE LIOFILIZACION EN LA CALIDAD DE PRODUCTOS DE FRUTA. INFLUENCIA DE LA MATRIZ/
Agradecimientos:
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This study is financially supported by the Ministerio de Economia, Industria y Competitividad of Spain through the Project AGL 2017-89251-R ...[+]
Tipo: Artículo

References

Agudelo, C., Igual, M. M., Camacho, M. M., & Martínez-Navarrete, N. (2017). Effect of process technology on the nutritional, functional, and physical quality of grapefruit powder. Food Science and Technology International, 23, 61–74. https://doi.org/10.1177/1082013216658368

Alam, S. A., Järvinen, J., Kirjoranta, S., Jouppila, K., Poutanen, K., & Sozer, N. (2014). Influence of particle size reduction on structural and mechanical properties of extruded rye bran. Food and Bioprocess Technology, 7, 2121–2133. https://doi.org/10.1007/s11947-013-1225-2

Barbosa-Cánovas, G. V., Ortega-Rivas, E., Juliano, P., & Yan, H. S. (2005). Food powders: physical properties, processing, and functionality. Kluwer Academic/Plenum [+]
Agudelo, C., Igual, M. M., Camacho, M. M., & Martínez-Navarrete, N. (2017). Effect of process technology on the nutritional, functional, and physical quality of grapefruit powder. Food Science and Technology International, 23, 61–74. https://doi.org/10.1177/1082013216658368

Alam, S. A., Järvinen, J., Kirjoranta, S., Jouppila, K., Poutanen, K., & Sozer, N. (2014). Influence of particle size reduction on structural and mechanical properties of extruded rye bran. Food and Bioprocess Technology, 7, 2121–2133. https://doi.org/10.1007/s11947-013-1225-2

Barbosa-Cánovas, G. V., Ortega-Rivas, E., Juliano, P., & Yan, H. S. (2005). Food powders: physical properties, processing, and functionality. Kluwer Academic/Plenum

Bender, A. B. B., Speroni, C. S., Moro, K. I. B., Morisso, F., dos Santos, D., da Silva, L. P., & Penna, N. (2020). Effects of micronization on dietary fiber composition, physicochemical properties, phenolic compounds, and antioxidant capacity of grape pomace and its dietary fiber concentrate. LWT - Food Science and Technology, 117, 108652. https://doi.org/10.1016/j.lwt.2019.108652

Day, L., Xu, M., Oiseth, S. K., Hemar, Y., & Lundin, L. (2010). Control of morphological and rheological properties of carrot cell wall particle dispersions through processing. Food and Bioprocess Technology, 3, 928–934. https://doi.org/10.1007/s11947-010-0346-0

Fitzpatrick, J. J., van Lauwe, A., Coursol, M., O’Brien, A., Fitzpatrick, K. L., Ji, J., & Miao, S. (2016). Investigation of the rehydration behaviour of food powders by comparing the behaviour of twelve powders with different properties. Powder Technology, 297, 340–348. https://doi.org/10.1016/j.powtec.2016.04.036

Goh, H. P., Heng, P. W. S., & Liew, C. V. (2018). Comparative evaluation of powder flow parameters with reference to particle size and shape. International Journal of Pharmaceutics, 547, 133–141. https://doi.org/10.1016/j.ijpharm.2018.05.059

Gómez-Mejía, E., Rosales-Conrado, N., León-González, M. E., & Madrid, Y. (2019). Citrus peels waste as a source of value-added compounds: Extraction and quantification of bioactive polyphenols. Food Chemistry, 295(289), 299. https://doi.org/10.1016/j.foodchem.2019.05.136

Horta de Oliveira, G. H., Corrêa, P. C., Santos, F. L., Vasconcelos, W. L., Calil-Júnior, C., Machado-Baptestini, F., & Vargas-Elías, G. A. (2014). Physical characterization of coffee after roasting and grinding. Semina: Ciências Agrárias, 35, 1813–1828. https://doi.org/10.5433/1679-0359.2014v35n4p1813

IDF. (2014). Instant dried milk - Determination of the dispersibility and wettability. IDF 087. International Dairy Foundation.

Jayadeep, A., Singh, V., Sathyendra Rao, B. V., Srinivas, A., & Ali, S. Z. (2009). Effect of physical processing of commercial de-oiled rice bran on particle size distribution, and content of chemical and bio-functional components. Food and Bioprocess Technology, 2, 57–67. https://doi.org/10.1007/s11947-008-0094-6

Karam, M. C., Petit, J., Zimmer, D., Baudelaire-Djantou, E., & Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering, 188, 32–49. https://doi.org/10.1016/j.jfoodeng.2016.05.001

Liu, Y., Wang, L., Liu, F., & Pan, S. (2016). Effect of grinding methods on structural, physicochemical, and functional properties of insoluble dietary fiber from orange peel. International Journal of Polymer Science, 2016, 6269302. https://doi.org/10.1155/2016/6269302

Lu, Z., Ye, F., Zhou, G., Gao, R., Qin, D., & Zhao, G. (2020). Micronized apple pomace as a novel emulsifier for food o/w pickering emulsion. Food Chemistry, 330, 127325. https://doi.org/10.1016/j.foodchem.2020.127325

Lundberg, B., Pan, X., White, A., Chau, H., & Hotchkiss, A. (2014). Rheology and composition of citrus fiber. Journal of Food Engineering, 125, 97–104. https://doi.org/10.1016/j.jfoodeng.2013.10.021

Lv, G., Zhang, Z., Pan, H., & Fan, L. (2014). Effect of physical modification of mushroom (A. chaxingu) powders on their physical and chemical properties. Food Science and Technology Research, 20, 731–738. https://doi.org/10.3136/fstr.20.731

Ma, G., Zhang, L., Sugiura, M., & Kato, M. (2020). Chapter 24 - Citrus and health. Woodhead Publishing. https://doi.org/10.1016/B978-0-12-812163-4.00024-3

Manthey, J. A., & Grohmann, K. (1996). Concentrations of hesperidin and other orange peel flavonoids in citrus processing byproducts. Journal of Agricultural and Food Chemistry, 44(3), 811–814. https://doi.org/10.1021/jf950572g

Mitra, H., Pushpadass, H. A., Franklin, M. E. E., Ambrose, R. P. K., Ghoroi, C., & Battul, S. N. (2017). Influence of moisture content on the flow properties of basundi mix. Powder Technology, 312, 133–143. https://doi.org/10.1016/j.powtec.2017.02.039

Moelants, K. R. N., Cardinaels, R., Jolie, R. P., Verrijssen, T. A. J., Van Buggenhout, S., Zumalacarregui, L. M., et al. (2013). Relation between particle properties and rheological characteristics of carrot-derived suspensions. Food and Bioprocess Technology, 6, 1127–1143. https://doi.org/10.1007/s11947-011-0718-0

Moelants, K. N., Cardinaels, R., Jolie, R., Verrijssen, T. J., Buggenhout, S., Loey, A., Moldenaers, P., & Hendrickx, M. (2014). Rheology of concentrated tomato-derived suspensions: Effects of particle characteristics. Food and Bioprocess Technology, 7, 248–264. https://doi.org/10.1007/s11947-013-1070-3

Okos, M. R. (1986). Physical and chemical properties of food. American Society of Agricultural Engineers.

Ortega-Rivas, E. (2009). Bulk properties of food particulate materials: an appraisal of their characterisation and relevance in processing. Food and Bioprocess Technology, 2, 28–44. https://doi.org/10.1007/s11947-008-0107-5

Peleg, M. (1977). Flowability of food powders and methods for its evaluation. Journal of Food Process Engineering, 1, 303–328. https://doi.org/10.1111/j.1745-4530.1977.tb00188.x

Proteggente, A. R., Sekher-Pannala, A., Paganga, G., van Buren, L., Wagner, E., Wiseman, S., van de Put, F., Dacombe, C., & Rice-Evans, C. A. (2002). The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radical Research, 36(2), 217–233. https://doi.org/10.1080/10715760290006484

Royal Spanish Pharmacopoeia. (2015). Ministerio de Sanidad, Servicios. Sociales e Igualdad. Retrieved Accessed July 6, 2021, from http://tienda.boe.es/Farmacopea_index.html

Sánchez-Mata, M. C., Cámara-Hurtado, M., Díez-Marqués, C., & Torija-Isasa, M. E. (2000). Comparison of high-performance liquid chromatography and spectrofluorimetry for vitamin C analysis of green beans (Phaseolus vulgaris L.). European Food Research and Technology, 210(3), 220–225. https://doi.org/10.1007/PL00005516

Sánchez-Moreno, C., Plaza, L., de Ancos, B., & Cano, M. P. (2003). Quantitative bioactive compounds assessment and their relative contribution to the antioxidant capacity of commercial orange juices. Journal of the Science of Food and Agriculture, 83(5), 430–439. https://doi.org/10.1002/jsfa.1392

Savlak, N., & Turker, B. (2020). Particle size affects physical properties and antioxidant activity of unripe banana peel. Fresenius Environmental Bulletin, 29(3), 1677–1685. https://doi.org/10.1016/j.foodchem.2016.06.064

Schubert, H. (1987). Food particle technology. Part 1: Properties of particles and particulate food systems. Journal of Food Engineering, 6, 1–32. https://doi.org/10.1016/0260-8774(87)90019-7

Silva-Espinoza, M. A., Ayed, C., Camacho, M. M., Foster, T., & Martínez-Navarrete, N. (2021a). Impact of maltodextrin, gum Arabic, different fibres and starches on the properties of freeze-dried orange puree powder. Food Biophysics, 16, 270–279. https://doi.org/10.1007/s11483-021-09667-x

Silva-Espinoza, M. A., Camacho, M. M., & Martínez-Navarrete, N. (2020). Use of different biopolymers as carriers for purposes of obtaining a freeze-dried orange snack. LWT-Food Science and Technology, 127, 109415. https://doi.org/10.1016/j.lwt.2020.109415

Silva-Espinoza, M. A., Salvador, A., Camacho, M. M., & Martínez-Navarrete, N. (2021b). Impact of freeze-drying conditions on the sensory perception of a freeze-dried orange snack. Journal of Science and Food Agriculture, 101, 4585–4590. https://doi.org/10.1002/jsfa.11101

Speroni, C. S., Bender, A. B. B., Stiebe, J., Ballus, C. A., Felix-Ávila, P., Goldbeck, R., Morisso, F., da Silva, L., & Emanuelli, T. (2020). Granulometric fractionation and micronization: A process for increasing soluble dietary fiber content and improving technological and functional properties of olive pomace. LWT-Food Science and Technology, 130, 109526. https://doi.org/10.1016/j.lwt.2020.109526

Tay, J. Y. S., Liew, C. V., & Heng, P. W. S. (2016). Powder flow testing: Judicious choice of test methods. An Official Journal of the American Association of Pharmaceutical Scientists, 18, 1843–1854. https://doi.org/10.1208/s12249-016-0655-3

Xu, G., Liu, D., Chen, J., Ye, X., Ma, Y., & Shi, J. (2008). Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chemistry, 106(2), 545–551. https://doi.org/10.1016/j.foodchem.2007.06.046

Zhao, X., Yang, Z., Gai, G., & Yang, Y. (2009). Effect of superfine grinding on properties of ginger powder. Journal of Food Engineering, 91(2), 217–222. https://doi.org/10.1016/j.jfoodeng.2008.08.024

Zhong, C., Zu, Y., Zhao, X., Li, Y., Ge, Y., Wu, W., Zhang, Y., Li, Y., & Guo, D. (2016). Effect of superfine grinding on physicochemical and antioxidant properties of pomegranate peel. International Journal of Food Science and Technology, 51, 212–221. https://doi.org/10.1111/ijfs.12982

Zhu, F., Du, B., & Xu, B. (2015). Superfine grinding improves functional properties and antioxidant capacities of bran dietary fibre from Qingke (hull-less barley) grown in Qinghai-Tibet Plateau, China. Journal of Cereal Science, 65, 43–47. https://doi.org/10.1016/j.jcs.2015.06.006

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem