- -

Flowability, Rehydration Behaviour and bioactive Compounds of an Orange Powder Product as Affected by Particle Size

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Flowability, Rehydration Behaviour and bioactive Compounds of an Orange Powder Product as Affected by Particle Size

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Camacho Vidal, Mª Mar es_ES
dc.contributor.author Silva Espinoza, Marilú Andrea es_ES
dc.contributor.author Martínez-Navarrete, Nuria es_ES
dc.date.accessioned 2023-10-05T18:01:41Z
dc.date.available 2023-10-05T18:01:41Z
dc.date.issued 2022-03 es_ES
dc.identifier.issn 1935-5130 es_ES
dc.identifier.uri http://hdl.handle.net/10251/197771
dc.description.abstract [EN] By offering a powder that ensures the healthy value of the fruits, a proper flowability and adequate viscosity after rehydration, there could be an opportunity to promote fruit consumption. The particle size is of critical importance with regard to the properties of a powder. But the separation of a product by particle size is usually associated with compositional changes. In this study, an orange powder product with the same composition but different particle size was compared. The particle sizes considered (269 +/- 4, 189 +/- 4, 118 +/- 3 mu m) offer a product with the same bioactive compound content and guarantee a good powder flowability: angle of repose, compressibility, density, porosity and Hausner's and Carr's indexes. Nevertheless, grinding can be used as a simple green technology with which to adjust the particle size so as to obtain rehydrated products with differing viscosities and, therefore, powders with different applications: the smaller the particle size, the lower the viscosity. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This study is financially supported by the Ministerio de Economia, Industria y Competitividad of Spain through the Project AGL 2017-89251-R (AEI/FEDER-UE). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Angle of repose es_ES
dc.subject Bulk and tapped densities es_ES
dc.subject Wettability es_ES
dc.subject Viscosity es_ES
dc.subject Vitamin C es_ES
dc.subject Flavonoids es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Flowability, Rehydration Behaviour and bioactive Compounds of an Orange Powder Product as Affected by Particle Size es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-022-02773-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-89251-R/ES/IMPACTO DE LAS CONDICIONES DE LIOFILIZACION EN LA CALIDAD DE PRODUCTOS DE FRUTA. INFLUENCIA DE LA MATRIZ/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Camacho Vidal, MM.; Silva Espinoza, MA.; Martínez-Navarrete, N. (2022). Flowability, Rehydration Behaviour and bioactive Compounds of an Orange Powder Product as Affected by Particle Size. Food and Bioprocess Technology. 15(3):683-692. https://doi.org/10.1007/s11947-022-02773-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11947-022-02773-9 es_ES
dc.description.upvformatpinicio 683 es_ES
dc.description.upvformatpfin 692 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\455449 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Agudelo, C., Igual, M. M., Camacho, M. M., & Martínez-Navarrete, N. (2017). Effect of process technology on the nutritional, functional, and physical quality of grapefruit powder. Food Science and Technology International, 23, 61–74. https://doi.org/10.1177/1082013216658368 es_ES
dc.description.references Alam, S. A., Järvinen, J., Kirjoranta, S., Jouppila, K., Poutanen, K., & Sozer, N. (2014). Influence of particle size reduction on structural and mechanical properties of extruded rye bran. Food and Bioprocess Technology, 7, 2121–2133. https://doi.org/10.1007/s11947-013-1225-2 es_ES
dc.description.references Barbosa-Cánovas, G. V., Ortega-Rivas, E., Juliano, P., & Yan, H. S. (2005). Food powders: physical properties, processing, and functionality. Kluwer Academic/Plenum es_ES
dc.description.references Bender, A. B. B., Speroni, C. S., Moro, K. I. B., Morisso, F., dos Santos, D., da Silva, L. P., & Penna, N. (2020). Effects of micronization on dietary fiber composition, physicochemical properties, phenolic compounds, and antioxidant capacity of grape pomace and its dietary fiber concentrate. LWT - Food Science and Technology, 117, 108652. https://doi.org/10.1016/j.lwt.2019.108652 es_ES
dc.description.references Day, L., Xu, M., Oiseth, S. K., Hemar, Y., & Lundin, L. (2010). Control of morphological and rheological properties of carrot cell wall particle dispersions through processing. Food and Bioprocess Technology, 3, 928–934. https://doi.org/10.1007/s11947-010-0346-0 es_ES
dc.description.references Fitzpatrick, J. J., van Lauwe, A., Coursol, M., O’Brien, A., Fitzpatrick, K. L., Ji, J., & Miao, S. (2016). Investigation of the rehydration behaviour of food powders by comparing the behaviour of twelve powders with different properties. Powder Technology, 297, 340–348. https://doi.org/10.1016/j.powtec.2016.04.036 es_ES
dc.description.references Goh, H. P., Heng, P. W. S., & Liew, C. V. (2018). Comparative evaluation of powder flow parameters with reference to particle size and shape. International Journal of Pharmaceutics, 547, 133–141. https://doi.org/10.1016/j.ijpharm.2018.05.059 es_ES
dc.description.references Gómez-Mejía, E., Rosales-Conrado, N., León-González, M. E., & Madrid, Y. (2019). Citrus peels waste as a source of value-added compounds: Extraction and quantification of bioactive polyphenols. Food Chemistry, 295(289), 299. https://doi.org/10.1016/j.foodchem.2019.05.136 es_ES
dc.description.references Horta de Oliveira, G. H., Corrêa, P. C., Santos, F. L., Vasconcelos, W. L., Calil-Júnior, C., Machado-Baptestini, F., & Vargas-Elías, G. A. (2014). Physical characterization of coffee after roasting and grinding. Semina: Ciências Agrárias, 35, 1813–1828. https://doi.org/10.5433/1679-0359.2014v35n4p1813 es_ES
dc.description.references IDF. (2014). Instant dried milk - Determination of the dispersibility and wettability. IDF 087. International Dairy Foundation. es_ES
dc.description.references Jayadeep, A., Singh, V., Sathyendra Rao, B. V., Srinivas, A., & Ali, S. Z. (2009). Effect of physical processing of commercial de-oiled rice bran on particle size distribution, and content of chemical and bio-functional components. Food and Bioprocess Technology, 2, 57–67. https://doi.org/10.1007/s11947-008-0094-6 es_ES
dc.description.references Karam, M. C., Petit, J., Zimmer, D., Baudelaire-Djantou, E., & Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering, 188, 32–49. https://doi.org/10.1016/j.jfoodeng.2016.05.001 es_ES
dc.description.references Liu, Y., Wang, L., Liu, F., & Pan, S. (2016). Effect of grinding methods on structural, physicochemical, and functional properties of insoluble dietary fiber from orange peel. International Journal of Polymer Science, 2016, 6269302. https://doi.org/10.1155/2016/6269302 es_ES
dc.description.references Lu, Z., Ye, F., Zhou, G., Gao, R., Qin, D., & Zhao, G. (2020). Micronized apple pomace as a novel emulsifier for food o/w pickering emulsion. Food Chemistry, 330, 127325. https://doi.org/10.1016/j.foodchem.2020.127325 es_ES
dc.description.references Lundberg, B., Pan, X., White, A., Chau, H., & Hotchkiss, A. (2014). Rheology and composition of citrus fiber. Journal of Food Engineering, 125, 97–104. https://doi.org/10.1016/j.jfoodeng.2013.10.021 es_ES
dc.description.references Lv, G., Zhang, Z., Pan, H., & Fan, L. (2014). Effect of physical modification of mushroom (A. chaxingu) powders on their physical and chemical properties. Food Science and Technology Research, 20, 731–738. https://doi.org/10.3136/fstr.20.731 es_ES
dc.description.references Ma, G., Zhang, L., Sugiura, M., & Kato, M. (2020). Chapter 24 - Citrus and health. Woodhead Publishing. https://doi.org/10.1016/B978-0-12-812163-4.00024-3 es_ES
dc.description.references Manthey, J. A., & Grohmann, K. (1996). Concentrations of hesperidin and other orange peel flavonoids in citrus processing byproducts. Journal of Agricultural and Food Chemistry, 44(3), 811–814. https://doi.org/10.1021/jf950572g es_ES
dc.description.references Mitra, H., Pushpadass, H. A., Franklin, M. E. E., Ambrose, R. P. K., Ghoroi, C., & Battul, S. N. (2017). Influence of moisture content on the flow properties of basundi mix. Powder Technology, 312, 133–143. https://doi.org/10.1016/j.powtec.2017.02.039 es_ES
dc.description.references Moelants, K. R. N., Cardinaels, R., Jolie, R. P., Verrijssen, T. A. J., Van Buggenhout, S., Zumalacarregui, L. M., et al. (2013). Relation between particle properties and rheological characteristics of carrot-derived suspensions. Food and Bioprocess Technology, 6, 1127–1143. https://doi.org/10.1007/s11947-011-0718-0 es_ES
dc.description.references Moelants, K. N., Cardinaels, R., Jolie, R., Verrijssen, T. J., Buggenhout, S., Loey, A., Moldenaers, P., & Hendrickx, M. (2014). Rheology of concentrated tomato-derived suspensions: Effects of particle characteristics. Food and Bioprocess Technology, 7, 248–264. https://doi.org/10.1007/s11947-013-1070-3 es_ES
dc.description.references Okos, M. R. (1986). Physical and chemical properties of food. American Society of Agricultural Engineers. es_ES
dc.description.references Ortega-Rivas, E. (2009). Bulk properties of food particulate materials: an appraisal of their characterisation and relevance in processing. Food and Bioprocess Technology, 2, 28–44. https://doi.org/10.1007/s11947-008-0107-5 es_ES
dc.description.references Peleg, M. (1977). Flowability of food powders and methods for its evaluation. Journal of Food Process Engineering, 1, 303–328. https://doi.org/10.1111/j.1745-4530.1977.tb00188.x es_ES
dc.description.references Proteggente, A. R., Sekher-Pannala, A., Paganga, G., van Buren, L., Wagner, E., Wiseman, S., van de Put, F., Dacombe, C., & Rice-Evans, C. A. (2002). The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radical Research, 36(2), 217–233. https://doi.org/10.1080/10715760290006484 es_ES
dc.description.references Royal Spanish Pharmacopoeia. (2015). Ministerio de Sanidad, Servicios. Sociales e Igualdad. Retrieved Accessed July 6, 2021, from http://tienda.boe.es/Farmacopea_index.html es_ES
dc.description.references Sánchez-Mata, M. C., Cámara-Hurtado, M., Díez-Marqués, C., & Torija-Isasa, M. E. (2000). Comparison of high-performance liquid chromatography and spectrofluorimetry for vitamin C analysis of green beans (Phaseolus vulgaris L.). European Food Research and Technology, 210(3), 220–225. https://doi.org/10.1007/PL00005516 es_ES
dc.description.references Sánchez-Moreno, C., Plaza, L., de Ancos, B., & Cano, M. P. (2003). Quantitative bioactive compounds assessment and their relative contribution to the antioxidant capacity of commercial orange juices. Journal of the Science of Food and Agriculture, 83(5), 430–439. https://doi.org/10.1002/jsfa.1392 es_ES
dc.description.references Savlak, N., & Turker, B. (2020). Particle size affects physical properties and antioxidant activity of unripe banana peel. Fresenius Environmental Bulletin, 29(3), 1677–1685. https://doi.org/10.1016/j.foodchem.2016.06.064 es_ES
dc.description.references Schubert, H. (1987). Food particle technology. Part 1: Properties of particles and particulate food systems. Journal of Food Engineering, 6, 1–32. https://doi.org/10.1016/0260-8774(87)90019-7 es_ES
dc.description.references Silva-Espinoza, M. A., Ayed, C., Camacho, M. M., Foster, T., & Martínez-Navarrete, N. (2021a). Impact of maltodextrin, gum Arabic, different fibres and starches on the properties of freeze-dried orange puree powder. Food Biophysics, 16, 270–279. https://doi.org/10.1007/s11483-021-09667-x es_ES
dc.description.references Silva-Espinoza, M. A., Camacho, M. M., & Martínez-Navarrete, N. (2020). Use of different biopolymers as carriers for purposes of obtaining a freeze-dried orange snack. LWT-Food Science and Technology, 127, 109415. https://doi.org/10.1016/j.lwt.2020.109415 es_ES
dc.description.references Silva-Espinoza, M. A., Salvador, A., Camacho, M. M., & Martínez-Navarrete, N. (2021b). Impact of freeze-drying conditions on the sensory perception of a freeze-dried orange snack. Journal of Science and Food Agriculture, 101, 4585–4590. https://doi.org/10.1002/jsfa.11101 es_ES
dc.description.references Speroni, C. S., Bender, A. B. B., Stiebe, J., Ballus, C. A., Felix-Ávila, P., Goldbeck, R., Morisso, F., da Silva, L., & Emanuelli, T. (2020). Granulometric fractionation and micronization: A process for increasing soluble dietary fiber content and improving technological and functional properties of olive pomace. LWT-Food Science and Technology, 130, 109526. https://doi.org/10.1016/j.lwt.2020.109526 es_ES
dc.description.references Tay, J. Y. S., Liew, C. V., & Heng, P. W. S. (2016). Powder flow testing: Judicious choice of test methods. An Official Journal of the American Association of Pharmaceutical Scientists, 18, 1843–1854. https://doi.org/10.1208/s12249-016-0655-3 es_ES
dc.description.references Xu, G., Liu, D., Chen, J., Ye, X., Ma, Y., & Shi, J. (2008). Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chemistry, 106(2), 545–551. https://doi.org/10.1016/j.foodchem.2007.06.046 es_ES
dc.description.references Zhao, X., Yang, Z., Gai, G., & Yang, Y. (2009). Effect of superfine grinding on properties of ginger powder. Journal of Food Engineering, 91(2), 217–222. https://doi.org/10.1016/j.jfoodeng.2008.08.024 es_ES
dc.description.references Zhong, C., Zu, Y., Zhao, X., Li, Y., Ge, Y., Wu, W., Zhang, Y., Li, Y., & Guo, D. (2016). Effect of superfine grinding on physicochemical and antioxidant properties of pomegranate peel. International Journal of Food Science and Technology, 51, 212–221. https://doi.org/10.1111/ijfs.12982 es_ES
dc.description.references Zhu, F., Du, B., & Xu, B. (2015). Superfine grinding improves functional properties and antioxidant capacities of bran dietary fibre from Qingke (hull-less barley) grown in Qinghai-Tibet Plateau, China. Journal of Cereal Science, 65, 43–47. https://doi.org/10.1016/j.jcs.2015.06.006 es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem