Acevedo R, Sabater C, Olivero J (2018) Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environ Sci Pollut Res 25:13697–13708. https://doi.org/10.1007/s11356-018-1565-6
Alavanja MC, Dosemeci M, Samanic C, Lubin J, Lynch CF, Knott C, Barker J, Hoppin JA, Sandler DP, Coble J, Thomas K, Blair A (2004) Pesticides and lung cancer risk in the agricultural health study cohort. Am J Epidemiol 160:876–885. https://doi.org/10.1093/aje/kwh290
Álvarez C (2017) Evaluación de los riesgos ambientales de contaminantes de preocupación emergente en la Unión Europea. TFG, Universitat Politècnica de València, Valencia, Spain. https://riunet.upv.es
[+]
Acevedo R, Sabater C, Olivero J (2018) Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environ Sci Pollut Res 25:13697–13708. https://doi.org/10.1007/s11356-018-1565-6
Alavanja MC, Dosemeci M, Samanic C, Lubin J, Lynch CF, Knott C, Barker J, Hoppin JA, Sandler DP, Coble J, Thomas K, Blair A (2004) Pesticides and lung cancer risk in the agricultural health study cohort. Am J Epidemiol 160:876–885. https://doi.org/10.1093/aje/kwh290
Álvarez C (2017) Evaluación de los riesgos ambientales de contaminantes de preocupación emergente en la Unión Europea. TFG, Universitat Politècnica de València, Valencia, Spain. https://riunet.upv.es
Andersen HR, Andersen AM, Arnold SF, Autrup H, Barfoed M, Beresford NA, Bjerregaard P, Christiansen LB, Gissel B, Hummel R, Bonefeld E, Korsgaard B, Le Guevel R, Leffers H, McLachlan J, Møller A, Nielsen JB, Olea N, Oles-Karasko A, Pakdel F, Pedersen KL, Perez P, Skakkebœk NE, Sonnenschein C, Soto AM, Sumpter JP, Thorpe SM, Grandjean P (1999) Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals. Environ Health Perspect 107:89–108. https://doi.org/10.1289/ehp.99107s189
Aslantürk OS (2017) In vitro cytotoxicity and cell viability assays: principles, advantages, and disadvantages. By Özlem Sultan Aslantürk, Submitted: May 16th 2017 Reviewed: October 24th 2017 Published: December 20th 2017. https://doi.org/10.5772/intechopen.71923
Backstrom TD, Garson KN (2020) European Union to ban chlorpyrifos after January 31, 2020. The National Law Review X (4). https://www.natlawreview.com/article/european-union-to-ban-chlorpyrifos-after-january-31-2020
Balsiger HA, De la Torre R, Lee WY, Cox MB (2010) A four-hour yeast bioassay for the direct measure of estrogenic activity in wastewater without sample extraction, concentration, or sterilization. Sci Total Environ 408:1422–1429. https://doi.org/10.1016/j.scitotenv.2009.12.027
Baronian KHR (2004) The use of yeast and moulds as sensing elements in biosensors. Biosens Bioelectron 19:953–962. https://doi.org/10.1016/j.bios.2003.09.010
Bartlett DW, Clough JM, Godfrey CRA, Godwin JR, Hall AA, Heaney SP, Maund SJ (2001) Understanding the strobilurin fungicides. Pesticide Outlook 12:143–148. https://doi.org/10.1039/B106300F
Barron MG, Woodburn KB (1995) Ecotoxicology of chlorpyrifos. Rev Environ Contam Toxicol 144:1–93. https://doi.org/10.1007/978-1-4612-2550-8_1
Baskaran S, Kookana RS, Naidu R (2003) Contrasting behaviour of chlorpyrifos and its primary metabolite, TCP (3,5,6-trichloro-2-pyridinol), with depth in soil profiles. Aust J Soil Res 41:749–760. https://doi.org/10.1071/SR02062
Bernabò I, Gallo L, Sperone E, Triperi S, Brunelli E (2011) Survival, development, and gonadal differentiation in Rana dalmatina chronically exposed to chlorpyrifos. J Exp Zool A Ecol Genet Physiol 315:324–327. https://doi.org/10.1002/jez.678
Bishop PI, Willett CE (2014) The use of Other Scientifically Relevant Information (OSRI) in the U.S. Environmental Protection Agency (EPA) Endocrine Disruptor Screening Program, Birth deffects. Res B Dev Reprod Toxicol 101:3–22. https://doi.org/10.1002/bdrb.21077
Bonifacio AF, Ballesteros ML, Bonansea RI, Filippi I, Amé MV, Hued AC (2017) Environmental relevant concentrations of a chlorpyrifos commercial formulation affect two neotropical fish species, Cheirodon interruptus and Cnesterodon decemmaculatus. Chemosphere 188:486–493. https://doi.org/10.1016/j.chemosphere.2017.08.156
Braconi D, Bernardini G, Millucci L, Jacomelli G, Micheli V, Santucci A, Kortekamp A (2011) Saccharomyces cerevisiae as a tool to evaluate the effects of herbicides on Eukaryotic life. In: Kortekamp A (ed.) Herbicides and Environment, chapter 24. InteechOpen, Rijeka, 10.5772/13237
Braconi D, Bernardini G, Santucci A (2016) Saccharomyces cerevisiae as a model in ecotoxicological studies: a post-genomics perspective. J Proteom 137:19–34. https://doi.org/10.1016/j.jprot.2015.09.001
Brix R, Noguerol TN, Piña B, Balaam J, Nilsen AJ, Tollefsen KE, Levy W, Schramm KE, Barceló D (2010) Evaluation of the suitability of recombinant yeast-based estrogenicity assays as a pre-screening tool in environmental samples. Environ Int 36:361–367. https://doi.org/10.1016/j.envint.2010.02.004
Cabral MG, Viegas CA, Teixeira MC, Sá I (2003) Toxicity of chlorinated phenoxyacetic acid herbicides in the experimental eukaryotic model Saccharomyces cerevisiae: role of pH and of growth phase and size of the yeast cell population. Chemosphere 51:47–54. https://doi.org/10.1016/s0045-6535(02)00614-8
Cai Z, Zheng F, Ding Y, Zhan Y, Gong R, Li J, Aschner M, Zhang Q, Wu S, Li H (2019) Nrf2-regulated miR-380-3p Blocks the Translation of Sp3 Protein and Its Mediation of Paraquat-Induced Toxicity in Mouse Neuroblastoma N2a Cells. Toxicol Sci 171:515–529. https://doi.org/10.1093/toxsci/kfz162
Czekanska EM (2011) Assessment of cell proliferation with resazurin-based fluorescent dye. Methods Mol Biol 740:27–32. https://doi.org/10.1007/978-161779-108-6_5
Dam K, Seidler FJ, Slotkin TA (2000) Chlorpyrifos exposure during a critical neonatal period elicits gender-selective deficits in the development of coordination skills and locomotor activity. Dev Brain Res 121:179–187. https://doi.org/10.1016/s0165-3806(00)00044-4
Das KP, Barone S (1999) Neuronal differentiation in PC12 cells is inhibited by chlorpyrifos and its metabolites: is acetyl-cholinesterase inhibition the site of action? Toxicol Appl Pharmacol 160:217–230. https://doi.org/10.1006/taap.1999.8767
De Angelis S, Tassinari R, Maranghi F, Eusepi A, Di Virgilio A, Chiarotti F, Ricceri L, Venerosi A, Gilardi E, Moracci G, Calamandrei G, Olivieri A, Mantovani A (2007) Developmental exposure to chlorpyrifos induces alterations in thyroid and Thyroid Hormone Levels Without Other Toxicity Signs in Cd1 Mice. Toxicol Sci 108:311–319. https://doi.org/10.1093/toxsci/kfp017
European Commission (2002) Endocrine Disrupters: Study on gathering information on 435 substances in insuficient dates. Final Report DG ENV. EUDGENVIRONMENT: B4-3040/2001/325850/MARC/C2
Echeverri G, Jaramillo B, Sabater C, Castillo MÁ (2020) Acute toxicity of chlorpyrifos and its metabolite 3,5,6-trichloro-2-pyridinol alone and in combination using a battery of bioassays. Environ Sci Pollut Res 27:32770–32778. https://doi.org/10.1007/s11356-020-09392-x
EFSA (2019) Statement on the available outcomes of the human health assessment in the context of the pesticides peer review of the active substance chlorpyrifos. EFSA J 17(8):5809. https://doi.org/10.2903/j.efsa.2019.5809
EPA (2007) Draft list of initial pesticide active ingredients and pesticide inerts to be considered for screening under the Federal Food, Drug, and Cosmetic Act, Federal Register: US. p. 72 (116). http://www.epa.gov/endo/pubs/draft_list_frn_061807.pdf
EPA (2008) Evidence on the developmental and reproductive toxicity of chlorpyrifos. Draft. California Environmental Protection Agency. http://oehha.ca.gov/prop65/hazard_ident/pdf_zip/ChlorpyrifosHID0908.pdf.
EPA (2015) EDSP Weight of Evidence Conclusions on the Tier 1 Screening Assays for the List 1 Chemicals. Chemical: Chlorpyrifos. https://www.epa.gov/endocrine-disruption/status-endocrine-disruptor-screening-program-tier-1-screening-results-and-data
Esteban S, Gorga M, Petrovic M, González-Alonso S, Barceló D, Valcárcel Y (2014) Analysis and occurrence of endocrine-disrupting compounds and estrogenic activity in the surface waters of Central Spain. Sci. Total Environ. 466–467:939–951
Esteve K, Poupot C, Dabert P, Mietton M, Milistic V (2009) A Saccharomyces cerevisiae -based bioassay for assessing pesticide toxicity. J Ind Microbiol Biotechnol 36:1529–1534. https://doi.org/10.1007/s10295-009-0649-1
European Commission (2020) Commission implementing Regulation
(EU) 2020/18. Off J Eur U 13.1.2020: L7/14-L7/16
Ezzi L, Belhadj I, Haouas Z, Sakly A, Grissa I, Chakroun S, Kerkeni E, Hassine M, Mehdi M, Ben Cheikh H (2016) Histopathological and genotoxic effects of chlorpyrifos in rats. Environ Sci Pollut Res Int 23:4859–4867. https://doi.org/10.1007/s11356-015-5722-x
Fai PB, Grant A (2009a) A comparative study of Saccharomyces cerevisiae sensitivity against eight yeast species sensitivities to a range of toxicants. Chemosphere 75:289–296. https://doi.org/10.1016/j.chemosphere.2008.12.059
Fai B, Grant A (2009b) A rapid resazurin bioassay for assessing the toxicity of fungicides. Chemosphere 74:1165–1170. https://doi.org/10.1016/j.chemosphere.2008.11.078
Fang H, Tong W, Perkins R, Soto AM, Prechtl NV, Sheehan DM (2000) Quantitative comparisons of in vitro assays for estrogenic activities. Environ Health Perspect 108:723–729. https://doi.org/10.1289/ehp.00108723
Farag AT, El Okazy AM, El-Aswed AF (2003) Developmental toxicity study of chlorpyrifos in rats. Reprod Toxicol 17:203–208. https://doi.org/10.1016/s0890-6238(02)00121-1
Farag AT, Radwan AH, Sorour F, El Okazy A, El-Agamy ES, El-Sebae AEK (2010) Chlorpyrifos induced reproductive toxicity in male mice. Reprod Toxicol 29:80–85. https://doi.org/10.1016/j.reprotox.2009.10.003
Ferrando MD, Andreu E, Fernández A (1992) Relative sensitivity of Daphnia magna and Brachionus calyciflorus to 5 pesticides. J Environ Sci Health B. 27:511–522. https://doi.org/10.1080/03601239209372798
Freeman S, Nizani Y (1997) Control of Colletotrichum acutatum in strawberry under laboratory, greenhouse and field conditions. Plant Dis 81:749–752. https://doi.org/10.1094/PDIS.1997.81.7.749
Gilbert DF, Friedrich O (2017) Cell Viability Assays. Methods and Protocols. In: D. F. Gilbert and O. Friedrich (Ed). Human Press. https://doi.org/10.1007/978-1-4939-6960-9
García A, Rodríguez C, Restrepo E, Sánchez A (2017) Residuos de plaguicidas en tomate (Solanum lycopersicum) comercializado en Armenia, Colombia. Vitae (Revista de la Facultad de Ciencias Farmacéuticas y Alimentarias) 24:68–79. https://doi.org/10.17533/udea.vitae.v24n2(2)a08
García-Reyero N, Grau E, Castillo M, López de Alda MJ, Barceló D, Piña B (2001) Monitoring of endocrine disruptors in surface waters by the yeast recombinant assay. Environ Toxicol Chem 20:1152–1158. https://doi.org/10.1897/1551-5028(2001)020<1152:moedis>2.0.co;2
García-Reyero N, Piña B, Grimalt J, Fernández P, Fonts R, Polvillo O, Martrat B (2005) Estrogenic activity in sediments from European mountain l akes. Environ. Sci. Technol. 39:1427–1435. https://doi.org/10.1021/es0400685
Gebremariam SY, Beutel MW, Yonge DR, Flury M, Harsh JB (2012) Adsorption and desorption of chlorpyrifos to soils and sediments. In: Whitacre DM (ed) Reviews of Environmental Contamination and Toxicology. Springer, New York, NY, pp 123–175. https://doi.org/10.1007/978-1-4614-1463-6_3
Ghisari M, Bonefeld EC (2005) Impact of environmental chemicals on the thyroid hormone function in pituitary rat GH3 cells. Mol Cell Endocrin 244:31–41. https://doi.org/10.1016/j.mce.2005.01.013
Giddings JM, Williams WM, Solomon KR, Giesy JP (2014) Risks to aquatic organisms from use of chlorpyrifos in the Unites States. In: Giesy JP, Solomon KR (eds) Reviews of Environmental Contamination and Toxicology. Ecological Risk Assessment of chlorpyrifos, vol 231. Springer, New York, NY, pp 119–162
Giesy JP, Solomon KR, Coates JR, Dixon KR, Giddings JM, Kenaga EE (1999) Chlorpyrifos: ecological risk assessment in North American aquatic environments. Rev Environ Contam Toxicol 160:1–129. https://doi.org/10.1007/978-1-4612-1498-4_1
Gotoh M, Saito I, Huang J, Fukaya Y, Matsumoto T, Hosanaga N, Shibata E, Ichihara G, Kamujima M, Takeuchi Y (2001) Changes in cholinesterase activity, nerve conduction velocity, and clinical signs and symptoms in termite control operators exposed to chlorpyrifos. J Occup Health 43:157–164. https://doi.org/10.1539/joh.43.157
Grela E, Koz J, Grabowiecka A (2018) Current methodology of MTT assay in bacteria. A review. Acta Histochem 120:303–311. https://doi.org/10.1016/j.acthis.2018.03.007
Guerrero AJ (2003) Estudio de residuos de plaguicidas en frutas y hortalizas en áreas específicas de Colombia. Agronomía Colombiana 21:198–209. http://www.redalyc.org/articulo.oa?id=180317974009
Gupta SC, Mishra M, Sharma A, Deepak TGR, Kumar BR, Mishra RK, Chowdhuri DK (2010) Chlorpyrifos induces apoptosis and DNA damage in Drosophila through generation of reactive oxygen species. Ecotoxicol Environ Saf 73:1415–1423. https://doi.org/10.1016/j.ecoenv.2010.05.013
Hamid R, Rotshteyn Y, Rabadi L et al. (2004) Comparison of Alamar Blue and MTT assays for high through-put screening. Toxicol. In Vitro 18:703–710. https://doi.org/10.1016/j.tiv.2004.03.012
Haviland JA, Butz DE, Porter WP (2010) Long-term sex selective hormonal and behaviour alterations in mice exposed to low doses of chlorpyrifos in utero. Reprod Toxicol 29:74–79. https://doi.org/10.1016/j.reprotox.2009.10.008
Heinonen T, Tähti H (2013) Eläinkokeeton toksikologia kemikaalien turvallisuustestauksessa [Non-animal toxicology in the safety testing of chemicals]. Duodecim 129:1686–1694
Howard MD, Pope CN (2002) In vitro effects of chlorpyrifos, parathion, methyl parathion and their oxons on cardiac muscarinic receptor binding in neonatal and adult rats. Toxicology 170:1–10. https://doi.org/10.1016/s0300-483x(01)00498-x
Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Okhura Y, Ueno KA (1996) Combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharmaceutical Bull 19:1518–1520. https://doi.org/10.1248/bpb.19.1518
John EM, Shaike JM (2015) Chlorpyrifos: pollution and remediation. Environ Chem Lett 13:269–291. https://doi.org/10.1007/s10311-015-0513-7
Joshi SC, Mathur R, Gulati N (2007) Testicular toxicity of chlorpyrifos (an organophosphate pesticide) in albino rat. Toxicol Ind Health 23:439–444. https://doi.org/10.1177/0748233707080908
Kinnberg K (2003) Evaluation of in vitro assays for determination of estrogenic activity in the environment. Working Report 43. University of Southern Denmark. Danish Environmental Protection Agency
Kitagawa E, Momose Y, Iwahashi H (2003) Correlation of the structures of agricultural fungicides to gene expression in Saccharomyces cerevisiae upon exposure to toxic doses. Environ Sci Technol 37:2788–2793. https://doi.org/10.1021/es026156b
Koch HP, Hofeneder M, Bohne B (1993) The yeast tests: An alternative method for the testing of acute toxicity of drug substances and environmental chemicals. Methods Find Clin. Pharmacol 15:141–152
Kojima H, Katsura E, Takeuchi S, Niyama K, Kobayashi K (2004) Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells. Environ Health Perspect 112:524–531. https://doi.org/10.1289/ehp.6649
Koppikar SJ, Choudhari AS, Suryavanshi SA, Kumari S, Chattopadhyay S, Kaul R (2010) Aqueous cinnamon extract (ACE-c) from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential. BMC Cancer 10:210. https://doi.org/10.1186/1471-2407-10-210
Lee WJ, Sandler DP, Blair A, Samanic C, Cross AJ, Alavanja MCR (2007) Pesticide use and colorectal cancer risk in the agricultural health study. Int J Cancer 121:339–346. https://doi.org/10.1002/ijc.22635
LePage KT, Dickey RW, Gerwick WH, Jester EL, Murray TF (2005) On the use of neuro-2a neuroblastoma cells versus intact neurons in primary culture for neurotoxicity studies. Crit Rev Neurobiol 17:27–50. https://doi.org/10.1615/CritRevNeurobiol.v17.i1.20
López B, Veyrat A, Perez E, Gonzalez L, Marcos JF (2003) Comparison of the activity of antifungal hexapeptides and the fungicides thiabendazole and imazalil against postharvest fungal pathogens. Int J Food Microbiol 89:163–170. https://doi.org/10.1016/s0168-1605(03)00118-1
Lovecka P, Thimova M, Grznarova P, Lipov J, Knejzlik Z, Stiborova H, Nindhia TGT, Demnerova K, Ruml T (2015) Study of Cytotoxic Effects of Benzonitrile Pesticides. BioMed Res Int 381264:9. https://doi.org/10.1155/2015/381264
Mangas I, Vilanova E, Estévez J, França TCC (2016) Neurotoxic effects associated with current uses of organophosphorus compounds. J Braz Chem Soc 27:809–825. https://doi.org/10.5935/0103-5053.20160084
Mazanti L, Rice C, Bialek K, Sparling D, Stevenson C, Johnson WE, Kangas P, Rheinstein J (2003) Aqueous-phase disappearance of atrazine, metolachlor, and chlorpyrifos in laboratory aquaria and outdoor macrocosms. Arch Environ Contam Toxicol 44:67–76. https://doi.org/10.1007/s00244-002-1259-3
Meneau R (2014) Métodos Alternativos en Toxicología. Revista CENIC: Ciencias Biológicas 45:11–21
Muller M, Hess L, Tardivo A, Lajmanovich R, Attademo A, Poletta G, Simoniello MF, Yodice A, Lavarello S, Chialvo D, Scremin O (2014) Neurologic dysfunction and genotoxicity induced by low levels of chlorpyrifos. Neurotoxicology. 45:22–30. https://doi.org/10.1016/j.neuro.2014.08.012
Mushtaq S, Kursad Y, Aksoy A (2018) Alternative methods to animal experiments. Turkiye Klinikleri J Med Sci 38:161–170. https://doi.org/10.5336/medsci.2018-59993
Nandi S, Gupta PSP, Roy SC, Selvaraju S, Ravindra JP (2009) Chlorpyrifos and endosulfan affect buffalo oocyte maturation, fertilization, and embryo development in vitro directly and through cumulus cells. Environ Toxicol 26:57–67. https://doi.org/10.1002/tox.20529
Navarro HA, Basta PV, Seidler FJ, Slotkin TA (2001) Neonatal chlorpyrifos administration elicits deficits in immune function in adulthood: a neural effect. Brain Res Dev Brain Res 130:249–252. https://doi.org/10.1016/s0165-3806(01)00254-1
Nishi K, Hundal SS (2013) Chlorpyrifos induced toxicity in reproductive organs of female Wistar rats. Food Chem Toxicol 62:732–738. https://doi.org/10.1016/j.fct.2013.10.006
Noguerol T, Boronat S, Jarque S (2006) Detection of hormone receptor ligands in yeast by fluorogenic methods. Talanta 69:351–358. https://doi.org/10.1016/j.talanta.2005.09.044
O’Brien J, Wilson I, Orton T, Pognan Ë (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426. https://doi.org/10.1046/j.1432-1327.2000.01606.x
Ojha A, Gupta YK (2015) Evaluation of genotoxic potential of commonly used organophosphate pesticides in peripheral blood lymphocytes of rats. Hum Exp Toxicol 34:390–400. https://doi.org/10.1177/0960327114537534
Papaefthimiou C, Cabral M, Mixailidou C, Viegas CA, Sá-Correia I, Theophilidis G (2004) Comparison of two screening bioassays, based on the frog sciatic nerve and yeast cells, for the assessment of herbicide toxicity. Environ Toxicol Chem 23:1211–1218. https://doi.org/10.1897/03-48
Pawlowiez R, Darius HT, Cruchet P, Rossi F, Caillaud A, Laurent D, Chinain M (2013) Evaluation of seafood toxicity in the Australes archipelago (French Polynesia) using the neuroblastoma cell-based assay. Food Add Contam A 30:567–586. https://doi.org/10.1080/19440049.2012.755644
Perreault F, Matias MS, Melegari SP, Silva de Carvalho CR, Creppy EE, Popovic R, Matias WG (2011) Investigation of animal and algal bioassays for reliable saxitoxin ecotoxicity and cytotoxicity risk evaluation. Ecotoxicol Environ Saf 74:1021–1026. https://doi.org/10.1016/j.ecoenv.2011.01.016
Piña B, Boronat S, Casado M, Olivares A (2009) Recombinant yeast assays and gene expression assays for the analysis of endocrine disruption. In: Barceló D, Hansen PD (Eds) Biosensors for Environmental Monitoring of Aquatic Systems. The Handbook of Environmental Chemistry, vol 5J. Springer, Berlin, Heidelberg, pp 69–113. https://doi.org/10.1007/978-3-540-36253-1_4
Pisapia F, Holland WC, Hardison DR, Litaker RW, Fraga S, Nishimura T, Adachi M, Nguyen-Ngoce L, Sécheta V, Amzila Z, Herrenknecht C, Hess P (2017) Toxicity screening of 13 Gambierdiscus strains using neuro-2a and erythrocyte lysis bioassays. Harmful Algae 63:173–183. https://doi.org/10.1016/j.hal.2017.02.005
Provost P (2010) Interpretation and applicability of microRNA data to the context of Alzheimer’s and age-related diseases. Aging (Albany NY) 2:166–169. https://doi.org/10.18632/aging.100131
Puy-Azurmendi E, Olivares A, Vallejo A, Ortiz-Zarragoitia M, Piña B, Zuloaga O, Cajaraville MP (2014) Estrogenic effects of nonylphenol and octylphenol isomers in vitro by recombinant yeast assay (RYA) and in vivo with early life stages of zebrafish. Sci Total Environ 466-467:1–10. https://doi.org/10.1016/j.scitotenv.2013.06.060
Qiao D, Seidler FJ, Slotkin TA (2001) Developmental neurotoxicity of chlorpyrifos modeled in vitro: comparative effects of metabolites and other cholinesterase inhibitors on DNA synthesis in PC12 and C6 cells. Environ. Health Perspect 109:909–913. https://doi.org/10.1289/ehp.01109909
Qiu XY, Li K, Li XQ, Li XT (2016) The inhibitory effects of nifedipine on outward voltage-gated potassium currents in mouse neuroblastoma N2A cells. Pharmacol Rep 68:631–637. https://doi.org/10.1016/j.pharep.2015.12.006
Rampersad SN (2012) Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 12:12347–12360. https://doi.org/10.3390/s120912347
Rey J, Otalvaro A, Chaparro M, Prieto L, López A (2018) Residuos de plaguicidas organofosforados en la cadena productiva del brócoli (Brassica oleracea L. var. italica) y coliflor (Brassica oleracea L. var. botrytis) en Colombia: aproximación a un perfil de riesgo. Rev Colomb Cienc Hortíc 12:156–165. https://doi.org/10.17584/rcch.2018v12i1.7352
Ribeiro IC, Verissimo I, Moniz L, Cardoso H, Sousa MJ, Soares AMVM, Leao C (2000) Yeasts as a model for assessing the toxicity of the fungicides Penconazol, Cymoxanil and Dichlofluanid. Chemosphere 41:1637–1642. https://doi.org/10.1016/S0045-6535(00)00039-4
Routledge EJ, Sumpter JP (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ Toxicol Chem 15:241–248. https://doi.org/10.1002/etc.5620150303
Sandal S, Yilmaz B (2011) Genotoxic effects of chlorpyrifos, cypermethrin, endosulfan and 2,4‐D on human peripheral lymphocytes cultured from smokers and nonsmokers. Environ. Toxicol. 26:433–442. https://doi.org/10.1002/tox.20569
Sindi RA, Harris W, Arnott G, Flaskos J, Lloyd C, Hargreaves AJ (2016) Chlorpyrifos- and chlorpyrifos oxon-induced neurite retraction in pre-differentiated N2a cells is associated with transient hyperphosphorylation of neurofilament heavy chain and ERK 1/2. Toxicol Appl Pharmacol 308:20–31. https://doi.org/10.1016/j.taap.2016.08.008
Slotkin TA (2004) Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates. Toxicol Appl Pharmacol 198:132–151. https://doi.org/10.1016/j.taap.2003.06.001
Slotkin TA (2005) Developmental neurotoxicity of organophosphates: a case study of chlorpyrifos. In: Gupta RC (Ed.) Toxicity of Organophosphate and Carbamate Pesticides. Elsevier Academic Press, San Diego, pp 293–314
Slotkin TA, Seidler FJ, Ryde IT, Yanai J (2008) Developmental neurotoxic effects of chlorpyrifos on acetylcholine and serotonin pathways in an avian model. Neurotoxicol Teratol 30:433–439. https://doi.org/10.1016/j.ntt.2008.02.005
Solomon KR, Williams WM, Mackay D, Purdy J, Giddings JM, Giesy JP (2014) Properties and uses of chlorpyrifos in the United States. Rev. Environ Contam Toxicol 231:13–34. https://doi.org/10.1007/978-3-319-03865-0_2
Tian Y, Ishikawa H, Yamaguchi T, Yokoyama K (2005) Teratogenicity and developmental toxicity of chlorpyrifos maternal exposure during organogenesis in mice. Reprod Toxicol 20:267–271. https://doi.org/10.1016/j.reprotox.2005.01.012
Tobón-Marulanda FA, López-Giraldo LA, Paniagua-Suárez RE (2012) Contaminación del agua por plaguicidas en un área de Antioquia. Rev Salud Pública 12:300–307. https://doi.org/10.1590/S0124-00642010000200013
Uchendu C, Ambali SF, Ayo JO, Lasisi IO, Umosen AJ (2013) Subacute chlorpyrifos induced alterations in serum lipids and some oxidative stress biomarkers in male Wister rats: beneficial effect of acetyl‐L‐carnitine. Toxicol Environ Chem 95:483–494. https://doi.org/10.1080/02772248.2013.782029
Usmani KA, Rose RL, Hodgson E (2003) Inhibition and activation of the human liver and human cytochrome P450 3A4 metabolism of testosterone by deployment-related chemicals. Drug Metabol Disp 31:384–391. https://doi.org/10.1124/dmd.31.4.384
Vadkertiová R, Slavikova E (2011) Influence of pesticides on yeasts colonizing leaves. Z. Naturforsch 66:588–594. https://doi.org/10.5560/ZNC.2011.66c0588
Van Emon JM, Pan P, van Breukelen F (2018) Effects of chlorpyrifos and trichloropyridinol on HEK 293 human embryonic kidney cells. Chemosphere 191:537–547. https://doi.org/10.1016/j.chemosphere.2017.10.039
Ventura C, Núñez M, Miret N, Martinel D, Randi A, Venturino A, Rivera E, Cocca C (2012) Differential mechanisms of action are involved in chlorpyrifos effects in estrogen-dependent or -independent breast cancer cells exposed to low or high concentrations of the pesticide. Toxicol Lett 213:184–193. https://doi.org/10.1016/j.toxlet.2012.06.017
Ventura C, Ramos MR, Bourguignon N, Lux-Lantos V, Rodriguez H, Cao G, Randi A, Cocca C, Núñez M (2016) Pesticide chlorpyrifos acts as an endocrine disruptor in adult rats causing changes in mammary gland and hormonal balance. J Steroid Biochem Mol Biol 156:1–9. https://doi.org/10.1016/j.jsbmb.2015.10.010
Ventura C, Zappia CD, Lasagna M, Pavicic W, Richard S, Bolzan AD, Monczor F, Núñez M, Cocca C (2019) Effects of the pesticide chlorpyrifos on breast cancer disease. Implication of epigenetic mechanisms. J Steroid Biochem Mol Biol 186:96–104. https://doi.org/10.1016/j.jsbmb.2018.09.021
Veronesi B (1992) In vitro screening batteries for neurotoxicants. Neurotoxicology 13:185–196
Viswanath G, Chatterjee S, Dabral S, Nanguneri SR, Divya G, Roy P (2010) Anti-androgenic endocrine disrupting activities of chlorpyrifos and piperophos. J Steroid Biochem Mol Biol 120:22–29. https://doi.org/10.1016/j.jsbmb.2010.02.032
Waly MI, Ali BH, Nemmar A (2013) Acute effects of diesel exhaust particles and cisplatin on oxidative stressin cultured human kidney (HEK 293) cells, and the influence of curcumint hereon. Toxicol in Vitro 27:2299–2304. https://doi.org/10.1016/j.tiv.2013.09.023
Wang X, Jiang L, Ge L, Chen M, Yang G, Ji F, Zhong L, Guan Y, Liu X (2015) Oxidative DNA damage induced by di-(2-ethylhexyl) phthalate in HEK-293 cell line. Environ Toxicol Pharmacol 39:1099–1106. https://doi.org/10.1016/j.etap.2015.03.016
Wang Y, Kim B, Walker A, Williams S, Meeks A, Lee YJ, Seo SS (2019) Cytotoxic effects of parathion, paraoxon, and their methylated derivatives on a mouse neuroblastoma cell line NB41A3. Fundam Toxicol Sci 6:45–56. https://doi.org/10.2131/fts.6.45
Xu G, Zheng W, Li Y, Wang S, Zhang J, Yan Y (2008) Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP. Int Biodeterior Biodegr 62:51–56. https://doi.org/10.1016/j.ibiod.2007.12.001
Yu K, Li G, Feng W, Liu L, Zhang J, Wu W, Xu L, Yan Y (2015) Chlorpyrifos is estrogenic and alters embryonic hatching, cell proliferation and apoptosis in zebrafish. Chem-Biol Interact 239:26–33. https://doi.org/10.1016/j.cbi.2015.06.010
Yun X, Huang Q, Rao W, Xiao C, Zhang T, Mao Z, Wan Z (2017) A comparative assessment of cytotoxicity of commonly used agricultural insecticides to human and insect cells. Ecotoxicol Environ Saf 137:179–185. https://doi.org/10.1016/j.ecoenv.2016.12.002
Zacharewski T (1998) Identification and assessment of endocrine disruptors: limitations of in vivo and in vitro assays. Environ Health Perspect 106:577–582. https://doi.org/10.1289/ehp.98106577
Zerva L, Hollis RJ, Pfaller MA (1996) In vitro susceptibility testing and DNA typing of Saccharomyces cerevisiae clinical isolates. J Clin Microbiol 34:3031–3034. https://doi.org/10.1128/JCM.34.12.3031-3034.1996
[-]