- -

Ley de control óptima de un AUV funcionando con un único motor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ley de control óptima de un AUV funcionando con un único motor

Mostrar el registro completo del ítem

Cerrada Collado, C.; Chaos García, D.; Moreno-Salinas, D.; Aranda Almansa, J. (2023). Ley de control óptima de un AUV funcionando con un único motor. Revista Iberoamericana de Automática e Informática industrial. 20(4):389-400. https://doi.org/10.4995/riai.2023.19034

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199440

Ficheros en el ítem

Metadatos del ítem

Título: Ley de control óptima de un AUV funcionando con un único motor
Otro titulo: Optimal control law of an AUV using a single thruster
Autor: Cerrada Collado, Cristina Chaos García, Dictino Moreno-Salinas, David Aranda Almansa, Joaquín
Fecha difusión:
Resumen:
[EN] The present paper presents a optimization problem of a control law to minimize the integral square error produced by driving an AUV (Autonomous Underwater Vehicle) using a single thruster from a start point to a desired ...[+]


[ES] En este artículo se plantea el problema de optimización de una ley de control para minimizar el error cuadrático integral al conducir un AUV (Autonomous Underwater Vehicle, vehículo autónomo submarino) actuado con un ...[+]
Palabras clave: Automatic control of marine and underwater systems , Optimal control , Nonlinear control , Fault-tolerant control , Control no lineal , Control automático de sistemas marinos y subacuáticos , Acomodación de fallos en sistemas de control , Control óptimo
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2023.19034
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2023.19034
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112502RB-C44/ES/NAUTILUS: MODELADO E IDENTIFICACION DE AUVS. ENFOQUES TEORICOS Y PRACTICOS./
Agradecimientos:
Este artículo ha sido financiado por el Ministerio de Ciencia e Innovación a través del proyecto con referencia PID2020-112502RB-C44.
Tipo: Artículo

References

Abreu, P. C., Botelho, J., Gois, P., Pascoal, A., Ribeiro, J., Ribeiro, M., Rufino, M., Sebastiao, L., Silva, H., 2016. The MEDUSA class of autonomous marine vehicles and their role in EU projects. In: OCEANS 2016 - Shanghai. pp. 1-10. https://doi.org/10.1109/OCEANSAP.2016.7485620

Aguiar, A., Pascoal, A., 2001. Regulation of a nonholonomic autonomous underwater vehicle with parametric modeling uncertainty using Lyapunov functions. In: Decision and Control, 2001. Proceedings of the 40th IEEE Conference on. Vol. 5. pp. 4178-4183. https://doi.org/10.1109/.2001.980841

Ahmadzadeh, S. R., Kormushev, P., Caldwell, D. G., 2014a. Multi-objective reinforcement learning for AUV thruster failure recovery. In: 2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). pp. 1-8. https://doi.org/10.1109/ADPRL.2014.7010621 [+]
Abreu, P. C., Botelho, J., Gois, P., Pascoal, A., Ribeiro, J., Ribeiro, M., Rufino, M., Sebastiao, L., Silva, H., 2016. The MEDUSA class of autonomous marine vehicles and their role in EU projects. In: OCEANS 2016 - Shanghai. pp. 1-10. https://doi.org/10.1109/OCEANSAP.2016.7485620

Aguiar, A., Pascoal, A., 2001. Regulation of a nonholonomic autonomous underwater vehicle with parametric modeling uncertainty using Lyapunov functions. In: Decision and Control, 2001. Proceedings of the 40th IEEE Conference on. Vol. 5. pp. 4178-4183. https://doi.org/10.1109/.2001.980841

Ahmadzadeh, S. R., Kormushev, P., Caldwell, D. G., 2014a. Multi-objective reinforcement learning for AUV thruster failure recovery. In: 2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). pp. 1-8. https://doi.org/10.1109/ADPRL.2014.7010621

Ahmadzadeh, S. R., Leonetti, M., Carrera, A., Carreras, M., Kormushev, P., Caldwell, D. G., 2014b. Online discovery of AUV control policies to overcome thruster failures. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). pp. 6522-6528. https://doi.org/10.1109/ICRA.2014.6907821

Alvarez, C., Saltarén, R., Aracil, R., García, C., 2009. Concepcion, Desarrollo y Avances en el Control de Navegacion de Robots Submarinos Paralelos: el Robot REMO-I. Revista Iberoamericana de Automatica e Informática industrial 6 (3), 92-100. https://doi.org/10.1016/S1697-7912(09)70268-7

Amin, A. A., Hasan, K. M., 2019. A review of Fault Tolerant Control Systems: Advancements and applications. Measurement 143, 58-68. https://doi.org/10.1016/j.measurement.2019.04.083

Antonelli, G., 2003. A Survey of Fault Detection/Tolerance Strategies for AUVs and ROVs. In: Caccavale, F., Villani, L. (Eds.), Fault Diagnosis and Fault Tolerance for Mechatronic Systems:Recent Advances. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 109-127. https://doi.org/10.1007/3-540-45737-2

Baldini, A., Ciabattoni, L., Felicetti, R., Ferracuti, F., Freddi, A., Monteriu, A., 2018. Dynamic surface fault tolerant control for underwater remotely operated vehicles. ISA Transactions 78, 10-20. https://doi.org/10.1016/j.isatra.2018.02.021

Boyd, S., Vandenberghe, L., 2004. Convex Optimization. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511804441

Cerrada, C., Chaos, D., Moreno-Salinas, D., Aranda, J., 2022. Optimización ley de control para un AUV funcionando con un único motor. In: XLIII Jornadas de Automática. pp. 1-8. https://doi.org/10.17979/spudc.9788497498418.0001

Chaos, D., Moreno-Salinas, D., Aranda, J., 2022. Fault-Tolerant Control for AUVs Using a Single Thruster. IEEE Access 10, 22123-22139. https://doi.org/10.1109/ACCESS.2022.3152190

Corradini, M. L., Monteriu, A., Orlando, G., 2011. An Actuator Failure Tolerant Control Scheme for an Underwater Remotely Operated Vehicle. IEEE Transactions on Control Systems Technology 19 (5), 1036-1046. https://doi.org/10.1109/TCST.2010.2060199

Crasta, N., Moreno-Salinas, D., Pascoal, A. M., Aranda, J., 2018. Multiple autonomous surface vehicle motion planning for cooperative range-based underwater target localization. Annual Reviews in Control 46, 326-342. https://doi.org/10.1016/j.arcontrol.2018.10.004

Ding, X., Zhu, D., 2020. Research on Static Fault-tolerant Control Method of UUV Based on MPC in Two Dimension. In: 2020 Chinese Control And Decision Conference (CCDC). pp. 5333-5338. https://doi.org/10.1109/CCDC49329.2020.9164413

Fossen, T. I., 2002. Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics AS, Trondheim.

Ghabcheloo, R., Aguiar, A. P., Pascoal, A., Silvestre, C., Kaminer, I., Hespanha, J., 2009. Coordinated Path-Following in the Presence of Communication Losses and Time Delays. SIAM Journal on Control and Optimization 48 (1), 234-265. https://doi.org/10.1137/060678993

Hao, L.-Y., Zhang, H., Li, H., Li, T.-S., 2020. Sliding mode fault-tolerant control for unmanned marine vehicles with signal quantization and time-delay. Ocean Engineering 215, 107882. https://doi.org/10.1016/j.oceaneng.2020.107882

Hao, L.-Y., Zhang, H., Li, T.-S., Lin, B., Chen, C. L. P., 2021a. Fault Tolerant Control for Dynamic Positioning of Unmanned Marine Vehicles Based on T-S Fuzzy Model With Unknown Membership Functions. IEEE Transactions on Vehicular Technology 70 (1), 146-157. https://doi.org/10.1109/TVT.2021.3050044

Hao, L.-Y., Zhang, Y.-Q., Li, H., 2021b. Fault-tolerant control via integral sliding mode output feedback for unmanned marine vehicles. Applied Mathematics and Computation 401, 126078. https://doi.org/10.1016/j.amc.2021.126078

Hou, C., Li, X., Wang, H., Zhai, P., Lu, H., 2022. Fuzzy linear extended states observer-based iteration learning fault-tolerant control for autonomous underwater vehicle trajectory-tracking system. IET Control Theory & Applications, 1-14. https://doi.org/10.1049/cth2.12288

Kramer, O., 2017. Genetic Algorithm Essentials. Springer International Publishing AG, part of Springer Nature, Cham.

Leonetti, M., Ahmadzadeh, S. R., Kormushev, P., 2013. On-line learning to recover from thruster failures on Autonomous Underwater Vehicles. In: 2013 OCEANS - San Diego. pp. 1-6. DOI: 10.23919/OCEANS.2013.6741265

Li, H., Pan, J., Zhang, X., Yu, J., 2021. Integral-based event-triggered fault estimation and impulsive fault-tolerant control for networked control systems applied to underwater vehicles. Neurocomputing 442, 36-47. https://doi.org/10.1016/j.neucom.2021.02.035

Li, H., Xu, J., Yu, J., 2022. Discrete Event-Triggered Fault-Tolerant Control of Underwater Vehicles Based on Takagi-Sugeno Fuzzy Model. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1-11. https://doi.org/10.1109/TSMC.2022.3205782

Liu, F., Tang, H., Qin, Y., Duan, C., Luo, J., Pu, H., 2022. Review on fault diagnosis of unmanned underwater vehicles. Ocean Engineering 243, 110290. https://doi.org/10.1016/j.oceaneng.2021.110290

Lv, T., Zhou, J., Wang, Y., Gong, W., Zhang, M., 2020. Sliding mode based fault tolerant control for autonomous underwater vehicle. Ocean Engineering 216, 107855. https://doi.org/10.1016/j.oceaneng.2020.107855

Mondal, K., Banerjee, T., 2019. Autonomous Underwater Vehicles: Recent Developments and Future Prospects. International Journal for Research in Applied Science and Engineering Technology 7, 215-222. https://doi.org/10.22214/ijraset.2019.11036

Moreno-Salinas, D., Pascoal, A., Aranda, J., 2016. Optimal Sensor Placement for Acoustic Underwater Target Positioning With Range-Only Measurements. IEEE Journal of Oceanic Engineering 41 (3), 620-643. https://doi.org/10.1109/JOE.2015.2494918

Ozturk, A., 2021. Lessons Learned from Robotics and AI in a Liability Context: A Sustainability Perspective. In: Carpenter, A., Johansson, T. M., Skinner, J. A. (Eds.), Sustainability in the Maritime Domain: Towards Ocean Governance and Beyond. Springer International Publishing, Cham, pp. 315-335. https://doi.org/10.1007/978-3-030-69325-1_16

Pearson, A. R., Sutton, R., Burns, R. S., Robinson, P., 2001. A Fuzzy Fault Tolerant Control Scheme for an Autonomous Underwater Vehicle. IFAC Proceedings Volumes 34 (7), 425-430. https://doi.org/10.1016/S1474-6670(17)35119-4

Podder, T. K., Sarkar, N., 2001. Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy. Robotics and Autonomous Systems 34 (1), 39-52. https://doi.org/10.1016/S0921-8890(00)00100-7

Pugi, L., Allotta, B., Pagliai, M., 2018. Redundant and reconfigurable propulsion systems to improve motion capability of underwater vehicles. Ocean Engineering 148, 376-385. https://doi.org/10.1016/j.oceaneng.2017.11.039

Puig, V., Quevedo, J., Escobet, T., Morcego, B., Ocampo, C., 2004a. Control Tolerante a Fallos (Parte I): Fundamentos y Diagnostico de Fallos. Revista Iberoamericana de Automática e Informática industrial 1 (1), 15-31.

Puig, V., Quevedo, J., Escobet, T., Morcego, B., Ocampo, C., 2004b. Control Tolerante a Fallos (Parte II): Mecanismos de Tolerancia y Sistema Supervisor. Revista Iberoamericana de Automática e Informática Industrial 1 (2), 5-21.

Rauber, J. G., Santos, C. H. F. d., Chiella, A. C. B., Motta, L. R. H., 2012. A strategy for thruster fault-tolerant control applied to an AUV. In: 2012 17th International Conference on Methods Models in Automation Robotics (MMAR). pp. 184-189. https://doi.org/10.1109/MMAR.2012.6347891

Sarkar, N., Podder, T. K., Antonelli, G., 2002. Fault-accommodating thruster force allocation of an AUV considering thruster redundancy and saturation. IEEE Transactions on Robotics and Automation 18 (2), 223-233. https://doi.org/10.1109/TRA.2002.999650

SNAME, 1950. Nomenclature for Treating the Motion of a Sumerged Body Through a Fluid. Tech. rep., The Society of naval Architects and Marine Engineers, series: Technical and research bulletin Nº 3-47.

Tian, Q.,Wang, T., Liu, B., Ran, G., 2022. Thruster Fault Diagnostics and Fault Tolerant Control for Autonomous Underwater Vehicle with Ocean Currents. Machines 10 (7), 582. https://doi.org/10.3390/machines10070582

Tolstov, G. P., Silverman, R. A., 1976. Fourier Series. Dover Publications, Inc., New York.

van Laarhoven, P. J. M., Aarts, E. H. L., 1987. Simulated annealing. Springer Netherlands, Dordrecht, pp. 7-15. https://doi.org/10.1007/978-94-015-7744-1

Wang, Y., Jiang, B., Wu, Z., Xie, S., Peng, Y., 2020. Adaptive Sliding Mode Fault-Tolerant Fuzzy Tracking Control With Application to Unmanned Marine Vehicles. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1-10. https://doi.org/10.1109/TSMC.2020.2964808

Yang, Y., Xiao, Y., Li, T., 2021. A Survey of Autonomous Underwater Vehicle Formation: Performance, Formation Control, and Communication Capability. IEEE Communications Surveys & Tutorials 23 (2), 815-841. https://doi.org/10.1109/COMST.2021.3059998

Zhang, H., Zhu, D., 2021. Quantum-Behaved Particle Swarm Optimization Fault-Tolerant Control for Human Occupied Vehicle. In: Liu, X.-J., Nie, Z., Yu, J., Xie, F., Song, R. (Eds.), Intelligent Robotics and Applications. Lecture Notes in Computer Science. Springer International Publishing, Cham, pp. 628-637. https://doi.org/10.1007/978-3-030-89092-6

Zhu, D., Liu, Q., Hu, Z., 2011. Fault-tolerant control algorithm of the manned submarine with multi-thruster based on quantum-behaved particle swarm optimisation. International Journal of Control 84 (11), 1817-1829. https://doi.org/10.1080/00207179.2011.626458

Zhu, D., Wang, L., Hu, Z., Yang, S. X., 2021. A Grasshopper Optimization-based fault-tolerant control algorithm for a human occupied submarine with the multi-thruster system. Ocean Engineering 242, 110101. https://doi.org/10.1016/j.oceaneng.2021.110101

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem