- -

Remarks on fixed point assertions in digital topology, 6

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Remarks on fixed point assertions in digital topology, 6

Mostrar el registro completo del ítem

Boxer, L. (2023). Remarks on fixed point assertions in digital topology, 6. Applied General Topology. 24(2):281-305. https://doi.org/10.4995/agt.2023.18996

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/199646

Ficheros en el ítem

Metadatos del ítem

Título: Remarks on fixed point assertions in digital topology, 6
Autor: Boxer, Laurence
Fecha difusión:
Resumen:
[EN] This paper continues a series discussing flaws in published assertions concerning fixed points in digital metric spaces.
Palabras clave: Digital topology , Fixed point , Metric space
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2023.18996
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2023.18996
Tipo: Artículo

References

R. Bhardwaj, Q. A. Kabir, S. Gupta, and H. G. S. Kumar, Digital soft α-ψ-contractive type mapping in digital soft metric spaces, J. Comput. Theor. Nanosci. 18 (2021), 1143- 1145.

L. Boxer, Digitally continuous functions, Pattern Recogn. Lett. 15, no. 8 (1994), 833- 839. https://doi.org/10.1016/0167-8655(94)90012-4

L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456 [+]
R. Bhardwaj, Q. A. Kabir, S. Gupta, and H. G. S. Kumar, Digital soft α-ψ-contractive type mapping in digital soft metric spaces, J. Comput. Theor. Nanosci. 18 (2021), 1143- 1145.

L. Boxer, Digitally continuous functions, Pattern Recogn. Lett. 15, no. 8 (1994), 833- 839. https://doi.org/10.1016/0167-8655(94)90012-4

L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456

L. Boxer, Continuous maps on digital simple closed curves, Appl. Math. 1 (2010), 377-386. https://doi.org/10.4236/am.2010.15050

L. Boxer, Remarks on fixed point assertions in digital topology, 2, Appl. Gen. Topol. 20, no. 1 (2019), 155-175. https://doi.org/10.4995/agt.2019.10667

L. Boxer, Remarks on fixed point assertions in digital topology, 3, Appl. Gen. Topol. 20, no. 2 (2019), 349-361. https://doi.org/10.4995/agt.2019.11117

L. Boxer, Remarks on fixed point assertions in digital topology, 4, Appl. Gen. Topol. 21, no. 2 (2020), 265-284. https://doi.org/10.4995/agt.2020.13075

L. Boxer, Remarks on fixed point assertions in digital topology, 5, Appl. Gen. Topol. 23, no. 2 (2022) 437-451. https://doi.org/10.4995/agt.2022.16655

L. Boxer and P. C. Staecker, Remarks on fixed point assertions in digital topology, Appl. Gen. Topol. 20, no. 1 (2019), 135-153. https://doi.org/10.4995/agt.2019.10474

M. S. Chauhan S. Rajesh, V. Rupali, and K. Q. Aftab, Fixed point theorem for quadruple self-mappings in digital metric space, Int. J. Sci. Res. Rev. 8, no. 1 (2019), 2533-2540.

S. Dalal, I. A. Masmali, and G. Y. Alhamzi, Common fixed point results for compatible map in digital metric space, Adv. Pure Math. 8 (2018), 362-371. https://doi.org/10.4236/apm.2018.83019

B. K. Dass and S. Gupta, An extension of Banach contraction principle through rational expression, Indian J. Pure Appl. Math. 6 (1975), 1455-1458.

U. P. Dolhare and V. V. Nalawade, Fixed point theorems in digital images and applications to fractal image compression, Asian J. Math. Comput. Res. 25, no. 1 (2018), 18-37.

O. Ege, D. Jain, S. Kumar, C. Park, and D. Y. Shin, Commuting and compatible mappings in digital metric spaces, J. Fixed Point Theory Appl. 22 (2020), 5. https://doi.org/10.1007/s11784-019-0744-5

O. Ege and I. Karaca, Banach fixed point theorem for digital images, J. Nonlinear Sci. Appl. 8, no. 3 (2015), 237-245. https://doi.org/10.22436/jnsa.008.03.08

O. Ege and I. Karaca, Digital homotopy fixed point theory, C. R. Math. Acad. Sci. Paris 353, no. 11 (2015), 1029-1033. https://doi.org/10.1016/j.crma.2015.07.006

S.-E. Han, Non-product property of the digital fundamental group, Inform. Sci. 171 (2005), 73-91. https://doi.org/10.1016/j.ins.2004.03.018

S.-E. Han, Banach fixed point theorem from the viewpoint of digital topology, J. Nonlinear Sci. Appl. 9 (2016), 895-905. https://doi.org/10.22436/jnsa.009.03.19

A. Hossain, R. Ferdausi, S. Mondal, and H. Rashid, Banach and Edelstein fixed point theorems for digital images, J. Math. Sci. Appl. 5, no. 2 (2017), 36-39. https://doi.org/10.12691/jmsa-5-2-2

D. Jain, Common fixed point theorem for compatible mappings of type (K) in digital metric spaces, Int. J. Math. Appl. 6 (2-A) (2018), 289-293. https://doi.org/10.14445/22315373/IJMTT-V56P511

D. Jain, Compatible mappings of type (R) in digital metric spaces, Int. J. Adv. Res. Trends Eng. Technol. 5, no. 4 (2018), 67-71.

D. Jain and S. Kumar, Fixed point theorem for α-ψ-expansive mappings in digital metric spaces, J. Basic Appl. Eng. Res. 4, no. 6 (2017), 406-411.

D. Jain, S. Kumar, and C. Park, Weakly compatible mappings in digital metric spaces, seemingly unpublished.

G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 11, no. 2 (1988), 285-288. https://doi.org/10.1155/S0161171288000341

R. Kalaiarasi and R. Jain, Fixed point theory in digital topology, Int. J. Nonlinear Anal. Appl. 13 (2022), 157-163.

M. V .R. Kameswari, D. M. K. Kiran, and R. K. Mohana Rao, Edelstein type fixed point theorem in digital metric spaces, J. Appl. Sci. Comput. V (XII) (2018), 44-52.

P. H. Krishna, K. K. M. Sarma, K. M. Rao, and D. A. Tatajee, Common fixed point theorems of Geraghty type contraction maps for digital metric spaces, Int. J. Eng. Res. Appl. (Series V) 10, no. 3 (2020), 34-38.

P. H. Krishna and D .A. Tatajee, Geraghty contraction principle for digital images, Int. Res. J. Pure Algebr. 9, no. 9 (2019), 64-69.

I. A. Masmali, G. Y. Alhamzi, and S. Dalal, α-β-ψ-φ contraction in digital metric spaces, Amer. J. Math. Anal. 6, no. 1 (2018), 5-15.

A. Rosenfeld, 'Continuous' functions on digital pictures, Pattern Recognit. Lett. 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6

B. Samet, C. Vetro, and P. Vetro, Fixed point theorem for α-ψ-contractive type mappings, Nonlinear Anal. 75 (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014

K. Shukla, On digital metric space satisfying certain rational inequalities, Appl. Appl. Math. 16, no. 1 (2021), 223- 236.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem