- -

Task parallelism-based architectures on FPGA to optimize the energy efficiency of AI at the edge

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Task parallelism-based architectures on FPGA to optimize the energy efficiency of AI at the edge

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gadea Gironés, Rafael es_ES
dc.contributor.author Fe, Jorge es_ES
dc.contributor.author Monzó Ferrer, José María es_ES
dc.date.accessioned 2023-12-18T19:08:36Z
dc.date.available 2023-12-18T19:08:36Z
dc.date.issued 2023-04 es_ES
dc.identifier.issn 0141-9331 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200883
dc.description.abstract [EN] In the world of artificial intelligence (AI) at the edge, we need to focus primarily on the energy efficiency with which we approach deep neural network (DNN) applications. In many applications, the speed of obtaining an inference can be critical; but many applications easily meet their time requirements, and the energy needed to calculate the huge numbers of multiplication and addition operations of DNNs becomes the essential element. We have provided systolic architectural solutions written in C++ and OpenCL that are highly flexible and easily tunable to take full advantage of the resources of programmable devices and achieve superior energy efficiencies. We focused on low-cost solutions with soft macro microprocessors (Nios2) and hard macro microprocessors (ARM cortex A9). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Microprocessors and Microsystems es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject FPGA es_ES
dc.subject Deep neural network es_ES
dc.subject Hardware co-design es_ES
dc.subject Energy efficiency es_ES
dc.subject Systolic architectures es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Task parallelism-based architectures on FPGA to optimize the energy efficiency of AI at the edge es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.micpro.2023.104824 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Gadea Gironés, R.; Fe, J.; Monzó Ferrer, JM. (2023). Task parallelism-based architectures on FPGA to optimize the energy efficiency of AI at the edge. Microprocessors and Microsystems. 98:1-15. https://doi.org/10.1016/j.micpro.2023.104824 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.micpro.2023.104824 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 98 es_ES
dc.relation.pasarela S\490808 es_ES
dc.contributor.funder Universitat Politècnica de València


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem