Mostrar el registro completo del ítem
Gadea Gironés, R.; Fe, J.; Monzó Ferrer, JM. (2023). Task parallelism-based architectures on FPGA to optimize the energy efficiency of AI at the edge. Microprocessors and Microsystems. 98:1-15. https://doi.org/10.1016/j.micpro.2023.104824
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/200883
Título: | Task parallelism-based architectures on FPGA to optimize the energy efficiency of AI at the edge | |
Autor: | Fe, Jorge | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] In the world of artificial intelligence (AI) at the edge, we need to focus primarily on the energy efficiency with which we approach deep neural network (DNN) applications. In many applications, the speed of obtaining ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1016/j.micpro.2023.104824 | |
Tipo: |
|