- -

A Database for Learning Numbers by Visual Finger Recognition in Developmental Neuro-Robotics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Database for Learning Numbers by Visual Finger Recognition in Developmental Neuro-Robotics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Davies, Sergio es_ES
dc.contributor.author Lucas, Alexandr es_ES
dc.contributor.author Ricolfe Viala, Carlos es_ES
dc.contributor.author Di Nuovo, Alessandro es_ES
dc.date.accessioned 2023-12-22T19:02:16Z
dc.date.available 2023-12-22T19:02:16Z
dc.date.issued 2021-03-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/201091
dc.description.abstract [EN] Numerical cognition is a fundamental component of human intelligence that has not been fully understood yet. Indeed, it is a subject of research in many disciplines, e.g., neuroscience, education, cognitive and developmental psychology, philosophy of mathematics, linguistics. In Artificial Intelligence, aspects of numerical cognition have been modelled through neural networks to replicate and analytically study children behaviours. However, artificial models need to incorporate realistic sensory-motor information from the body to fully mimic the children's learning behaviours, e.g., the use of fingers to learn and manipulate numbers. To this end, this article presents a database of images, focused on number representation with fingers using both human and robot hands, which can constitute the base for building new realistic models of numerical cognition in humanoid robots, enabling a grounded learning approach in developmental autonomous agents. The article provides a benchmark analysis of the datasets in the database that are used to train, validate, and test five state-of-the art deep neural networks, which are compared for classification accuracy together with an analysis of the computational requirements of each network. The discussion highlights the trade-off between speed and precision in the detection, which is required for realistic applications in robotics. es_ES
dc.description.sponsorship This work has been supported by the EPSRC through the grant no. EP/P030033/1 (NUMBERS), by the Department of Computing and the library at Sheffield Hallam University. Authors are grateful to the NVIDIA Corporation for donating GeForce GTX TITAN X that has been used to accelerate the computation. Authors are also grateful to the University of Sheffield for hosting the Sheffield Robotics Open Day in 2019 and the support received during the demonstration of the work presented in this article. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media S.A. es_ES
dc.relation.ispartof Frontiers in Neurorobotics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject SSD es_ES
dc.subject Cognitive robotics es_ES
dc.subject Developmental neuro-robotics es_ES
dc.subject Developmental robotics es_ES
dc.subject Finger counting es_ES
dc.subject ICub robot es_ES
dc.subject Region-based CNN es_ES
dc.subject Single shot detector es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title A Database for Learning Numbers by Visual Finger Recognition in Developmental Neuro-Robotics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fnbot.2021.619504 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EPSRC//EP%2FP030033%2F1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Sheffield Hallam University//Department of Computing and the Library/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Davies, S.; Lucas, A.; Ricolfe Viala, C.; Di Nuovo, A. (2021). A Database for Learning Numbers by Visual Finger Recognition in Developmental Neuro-Robotics. Frontiers in Neurorobotics. 15:1-15. https://doi.org/10.3389/fnbot.2021.619504 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fnbot.2021.619504 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.identifier.eissn 1662-5218 es_ES
dc.identifier.pmid 33737873 es_ES
dc.identifier.pmcid PMC7960766 es_ES
dc.relation.pasarela S\436470 es_ES
dc.contributor.funder Sheffield Hallam University es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem