- -

Analysis of challenges of digital service enabled by big data analytics technologies using a new integrated multiple-criteria decision-making (MCDM) method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of challenges of digital service enabled by big data analytics technologies using a new integrated multiple-criteria decision-making (MCDM) method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Saberi, Sara es_ES
dc.contributor.author Mardani, Abbas es_ES
dc.date.accessioned 2024-01-10T11:39:38Z
dc.date.available 2024-01-10T11:39:38Z
dc.date.issued 2023-09-22
dc.identifier.isbn 9788413960869
dc.identifier.uri http://hdl.handle.net/10251/201698
dc.description.abstract [EN] The digitalization of services and products is an approach adopted by modern companies to produce value. The key to success is knowing what your customers are saying about your company by compiling data in many aspects and reviewing the digital content collected from digitally enabled services. On the other hand, text review is a highly subjective task. The raw data has complex features, making analyzing the data on digital services a very complex and intriguing problem. This study collects the main challenges of digitally enabled services to offer an inclusive framework and describes the framework's potential in dealing with application-specific challenges. This study aims to suggest a data-driven decision-making model using the “intuitionistic fuzzy sets (IFSs)”, “method based on the removal effects of criteria (MEREC)”, “rank sum (RS), and the “multi-attribute multi-objective optimization with ratio analysis (MULTIMOORA)” approaches. The IFMEREC-RS tool computes the weights of the digital service challenges that big data analytics technologies enable and the IF-MULTIMOORA method prioritizes the technologies to assess the challenges. Then, an integrated decision-making framework is developed to investigate these challenges' subjective and objective weights using expert opinion. Using big data analytics, the proposed model can assess the preferences of technologies over different challenges. es_ES
dc.description.sponsorship This study was supported by the research projects “FMNet: A network for rapid execution for scaling production of needed designs” funded by NSF grant : 2036917 and “MA Manufacturing Emergency Response Team (MERT) 2.0” project funded by EDA grant: 01-79 es_ES
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 5th International Conference on Advanced Research Methods and Analytics (CARMA 2023)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Digital service es_ES
dc.subject Big data analytics es_ES
dc.subject Social media es_ES
dc.subject Digital technologies es_ES
dc.subject Data-driven decision-making es_ES
dc.title Analysis of challenges of digital service enabled by big data analytics technologies using a new integrated multiple-criteria decision-making (MCDM) method es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2023.2023.16445
dc.relation.projectID info:eu-repo/grantAgreement/NSF//2036917/FMNet: A network for rapid execution for scaling production of needed designs es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EDA//01-79/MA Manufacturing Emergency Response Team (MERT) 2.0 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Saberi, S.; Mardani, A. (2023). Analysis of challenges of digital service enabled by big data analytics technologies using a new integrated multiple-criteria decision-making (MCDM) method. Editorial Universitat Politècnica de València. 9-16. https://doi.org/10.4995/CARMA2023.2023.16445 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2023 - 5th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 28-30, 2023 es_ES
dc.relation.conferenceplace Sevilla, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2023/paper/view/16445 es_ES
dc.description.upvformatpinicio 9 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\16445 es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder European Defense Agency es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem