Mostrar el registro sencillo del ítem
dc.contributor.author | Saberi, Sara | es_ES |
dc.contributor.author | Mardani, Abbas | es_ES |
dc.date.accessioned | 2024-01-10T11:39:38Z | |
dc.date.available | 2024-01-10T11:39:38Z | |
dc.date.issued | 2023-09-22 | |
dc.identifier.isbn | 9788413960869 | |
dc.identifier.uri | http://hdl.handle.net/10251/201698 | |
dc.description.abstract | [EN] The digitalization of services and products is an approach adopted by modern companies to produce value. The key to success is knowing what your customers are saying about your company by compiling data in many aspects and reviewing the digital content collected from digitally enabled services. On the other hand, text review is a highly subjective task. The raw data has complex features, making analyzing the data on digital services a very complex and intriguing problem. This study collects the main challenges of digitally enabled services to offer an inclusive framework and describes the framework's potential in dealing with application-specific challenges. This study aims to suggest a data-driven decision-making model using the “intuitionistic fuzzy sets (IFSs)”, “method based on the removal effects of criteria (MEREC)”, “rank sum (RS), and the “multi-attribute multi-objective optimization with ratio analysis (MULTIMOORA)” approaches. The IFMEREC-RS tool computes the weights of the digital service challenges that big data analytics technologies enable and the IF-MULTIMOORA method prioritizes the technologies to assess the challenges. Then, an integrated decision-making framework is developed to investigate these challenges' subjective and objective weights using expert opinion. Using big data analytics, the proposed model can assess the preferences of technologies over different challenges. | es_ES |
dc.description.sponsorship | This study was supported by the research projects “FMNet: A network for rapid execution for scaling production of needed designs” funded by NSF grant : 2036917 and “MA Manufacturing Emergency Response Team (MERT) 2.0” project funded by EDA grant: 01-79 | es_ES |
dc.format.extent | 8 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | es_ES |
dc.relation.ispartof | 5th International Conference on Advanced Research Methods and Analytics (CARMA 2023) | |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Digital service | es_ES |
dc.subject | Big data analytics | es_ES |
dc.subject | Social media | es_ES |
dc.subject | Digital technologies | es_ES |
dc.subject | Data-driven decision-making | es_ES |
dc.title | Analysis of challenges of digital service enabled by big data analytics technologies using a new integrated multiple-criteria decision-making (MCDM) method | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.4995/CARMA2023.2023.16445 | |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//2036917/FMNet: A network for rapid execution for scaling production of needed designs | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EDA//01-79/MA Manufacturing Emergency Response Team (MERT) 2.0 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Saberi, S.; Mardani, A. (2023). Analysis of challenges of digital service enabled by big data analytics technologies using a new integrated multiple-criteria decision-making (MCDM) method. Editorial Universitat Politècnica de València. 9-16. https://doi.org/10.4995/CARMA2023.2023.16445 | es_ES |
dc.description.accrualMethod | OCS | es_ES |
dc.relation.conferencename | CARMA 2023 - 5th International Conference on Advanced Research Methods and Analytics | es_ES |
dc.relation.conferencedate | Junio 28-30, 2023 | es_ES |
dc.relation.conferenceplace | Sevilla, España | es_ES |
dc.relation.publisherversion | http://ocs.editorial.upv.es/index.php/CARMA/CARMA2023/paper/view/16445 | es_ES |
dc.description.upvformatpinicio | 9 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | OCS\16445 | es_ES |
dc.contributor.funder | National Science Foundation, EEUU | es_ES |
dc.contributor.funder | European Defense Agency | es_ES |