- -

Analysis of challenges of digital service enabled by big data analytics technologies using a new integrated multiple-criteria decision-making (MCDM) method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of challenges of digital service enabled by big data analytics technologies using a new integrated multiple-criteria decision-making (MCDM) method

Mostrar el registro completo del ítem

Saberi, S.; Mardani, A. (2023). Analysis of challenges of digital service enabled by big data analytics technologies using a new integrated multiple-criteria decision-making (MCDM) method. Editorial Universitat Politècnica de València. 9-16. https://doi.org/10.4995/CARMA2023.2023.16445

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/201698

Ficheros en el ítem

Metadatos del ítem

Título: Analysis of challenges of digital service enabled by big data analytics technologies using a new integrated multiple-criteria decision-making (MCDM) method
Autor: Saberi, Sara Mardani, Abbas
Fecha difusión:
Resumen:
[EN] The digitalization of services and products is an approach adopted by modern companies to produce value. The key to success is knowing what your customers are saying about your company by compiling data in many ...[+]
Palabras clave: Digital service , Big data analytics , Social media , Digital technologies , Data-driven decision-making
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
ISBN: 9788413960869
Fuente:
5th International Conference on Advanced Research Methods and Analytics (CARMA 2023).
DOI: 10.4995/CARMA2023.2023.16445
Editorial:
Editorial Universitat Politècnica de València
Versión del editor: http://ocs.editorial.upv.es/index.php/CARMA/CARMA2023/paper/view/16445
Título del congreso: CARMA 2023 - 5th International Conference on Advanced Research Methods and Analytics
Lugar del congreso: Sevilla, España
Fecha congreso: Junio 28-30, 2023
Código del Proyecto:
info:eu-repo/grantAgreement/NSF//2036917/FMNet: A network for rapid execution for scaling production of needed designs
info:eu-repo/grantAgreement/EDA//01-79/MA Manufacturing Emergency Response Team (MERT) 2.0
Agradecimientos:
This study was supported by the research projects “FMNet: A network for rapid execution for scaling production of needed designs” funded by NSF grant : 2036917 and “MA Manufacturing Emergency Response Team (MERT) 2.0” ...[+]
Tipo: Capítulo de libro Comunicación en congreso

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem