- -

Applying Transformers-based NLP Models to Explore Credibility in Different Product Categories in Amazon’s online reviews

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Applying Transformers-based NLP Models to Explore Credibility in Different Product Categories in Amazon’s online reviews

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Olmedilla, María es_ES
dc.contributor.author Romero, José Carlos es_ES
dc.contributor.author Martínez-Torres, Rocío es_ES
dc.contributor.author Toral, Sergio es_ES
dc.date.accessioned 2024-01-10T13:10:44Z
dc.date.available 2024-01-10T13:10:44Z
dc.date.issued 2023-09-22
dc.identifier.isbn 9788413960869
dc.identifier.uri http://hdl.handle.net/10251/201708
dc.description.abstract [EN] Online reviews in the e-commerce and eWOM communities play a key role in consumers’ purchase decisions. In this regard, one concern is the growth of fake reviews, which directly targets the credibility of platforms and the trust of users. To address this issue, we apply Transformers-based NLP models to better understand the scope of fake reviews within the Amazon marketplace across different product categories. Our methodology applies two different transformer models to Amazon online reviews for (1) generating fake reviews and (2) classifying online reviews as fake or truthful. This work contributes to the literature on understanding the credibility of online review. Our results show that most of the fake reviews are located in non-verified purchase reviews. Considering the different product categories, we found that the percentage of fake reviews is 3 times higher for the experience products and 8 times higher for the experience products for non-verified purchase reviews with respect to the fake reviews found in verified-purchase reviews. es_ES
dc.description.sponsorship This work was supported by the project Aplicación de Redes Generativas Antagónicas para Combatir la Manipulación de Clientes Online (REACT) Ref. PID2020-114527RB-I00 funded by MCIN/AEI/10.13039/501100011033 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 5th International Conference on Advanced Research Methods and Analytics (CARMA 2023)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Online reviews es_ES
dc.subject Transformers es_ES
dc.subject GPT-2 es_ES
dc.subject BERT es_ES
dc.subject Credibility es_ES
dc.subject Verified purchase es_ES
dc.title Applying Transformers-based NLP Models to Explore Credibility in Different Product Categories in Amazon’s online reviews es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114527RB-I00/ES/APLICACION DE REDES GENERATIVAS ANTAGONICAS PARA COMBATIR LA MANIPULACION DE CLIENTES ONLINE (REACT)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Olmedilla, M.; Romero, JC.; Martínez-Torres, R.; Toral, S. (2023). Applying Transformers-based NLP Models to Explore Credibility in Different Product Categories in Amazon’s online reviews. Editorial Universitat Politècnica de València. 111-112. http://hdl.handle.net/10251/201708 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2023 - 5th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 28-30, 2023 es_ES
dc.relation.conferenceplace Sevilla, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2023/paper/view/16453 es_ES
dc.description.upvformatpinicio 111 es_ES
dc.description.upvformatpfin 112 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\16453 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem