- -

Predicting the helpfulness score of videogames of the STEAM platform

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Predicting the helpfulness score of videogames of the STEAM platform

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Espinosa-Leal, Leonardo es_ES
dc.contributor.author Olmedilla, María es_ES
dc.contributor.author Li, Zhen es_ES
dc.date.accessioned 2024-01-11T08:56:13Z
dc.date.available 2024-01-11T08:56:13Z
dc.date.issued 2023-09-22
dc.identifier.isbn 9788413960869
dc.identifier.uri http://hdl.handle.net/10251/201767
dc.description.abstract [EN] Online reviews comprise a flood of user-generated content, so to identify the most useful reviews is a vital task. As such, many computational models have been made to automatically analyze the helpfulness of online reviews. In this work, we aim to predict the helpfulness score of videogames reviews using an available online dataset of more than 1M rows. We trained three different machine learning algorithms by implementing two strategies, predicting the helpfulness as a regression problem or as a binary classification problem. Our findings show that binary classification is the best method, and the achieved ROC-AUC of the best model is 0.7 with only a selected set of features. In addition, we found that using the feature vectors from a pretrained NLP model does not improve the performance of the models. es_ES
dc.description.sponsorship The work has been performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 5th International Conference on Advanced Research Methods and Analytics (CARMA 2023)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Videogames es_ES
dc.subject Helpfulness es_ES
dc.subject Machine learning es_ES
dc.subject NLP es_ES
dc.subject Online reviews es_ES
dc.title Predicting the helpfulness score of videogames of the STEAM platform es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/INFRAIA-2016-1-730897 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Espinosa-Leal, L.; Olmedilla, M.; Li, Z. (2023). Predicting the helpfulness score of videogames of the STEAM platform. Editorial Universitat Politècnica de València. 337-338. http://hdl.handle.net/10251/201767 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2023 - 5th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 28-30, 2023 es_ES
dc.relation.conferenceplace Sevilla, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2023/paper/view/16489 es_ES
dc.description.upvformatpinicio 337 es_ES
dc.description.upvformatpfin 338 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\16489 es_ES
dc.contributor.funder European Commission es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem