- -

Using LSTM-Predicted Stock Prices and Risk-Adjusted Performance Metrics to Optimize Portfolios in the European Market

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Using LSTM-Predicted Stock Prices and Risk-Adjusted Performance Metrics to Optimize Portfolios in the European Market

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martinez-Barbero, Xavier es_ES
dc.contributor.author Cervelló-Royo, Roberto es_ES
dc.contributor.author Ribal, Javier es_ES
dc.date.accessioned 2024-07-18T08:11:08Z
dc.date.available 2024-07-18T08:11:08Z
dc.date.issued 2024-03-12
dc.identifier.isbn 9788413961569
dc.identifier.uri http://hdl.handle.net/10251/206337
dc.description.abstract [EN] Long short-term memory (LSTM) neural networks allow to capture long-range dependencies and non-linearities in sequential data and can learn complex patterns and relationships in the data improving the accuracy of future stock price predictions. Since classical portfolio optimization is highly sensitive to the estimated parameters used to construct an optimal portfolio, the purpose of our research is to leverage LSTM abilities to predict the parameters accurately and create portfolios that generate superior results.We predict the prices of the 50 components of the EURO STOXX 50® Index using LSTM and create prediction-based optimal portfolios for ten different investment time horizons. We define the risk as a combination of the standard deviation and the performance of the evaluation metrics obtained testing our model, allowing us to use a measure for the risk based on the level of confidence the model has in the prediction.Our portfolios consistently beat the market over the analyzed investment scenarios from 2021 until the first half of 2022 and are robust for both growing and bear markets. The proposed model achieves an average MAE of 0.01634, an average MSE of 0.00047, and an average accuracy of 95.8% in predicting the direction of the stock movements over the ten proposed periods.Our research contributes to the field of finance by providing an innovative framework for portfolio optimization that leverages the power of LSTM-based stock price prediction and risk-adjusted performance metrics. es_ES
dc.format.extent 10 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 5th International Conference. Business Meets Technology
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Machine learning es_ES
dc.subject Neural networks es_ES
dc.subject Portfolio optimization es_ES
dc.title Using LSTM-Predicted Stock Prices and Risk-Adjusted Performance Metrics to Optimize Portfolios in the European Market es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/BMT2023.2023.16513
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Martinez-Barbero, X.; Cervelló-Royo, R.; Ribal, J. (2024). Using LSTM-Predicted Stock Prices and Risk-Adjusted Performance Metrics to Optimize Portfolios in the European Market. Editorial Universitat Politècnica de València. https://doi.org/10.4995/BMT2023.2023.16513 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename 5th International Conference. Business Meets Technology es_ES
dc.relation.conferencedate Julio 13-15, 2023 es_ES
dc.relation.conferenceplace Valencia, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/BMT/BMT2023/paper/view/16513 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\16513 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem