Mostrar el registro sencillo del ítem
dc.contributor.author | Porras, Santiago | es_ES |
dc.contributor.author | Sauvée, Athénaïs | es_ES |
dc.contributor.author | Puche, Julio César | es_ES |
dc.contributor.author | Casado, Silvia | es_ES |
dc.contributor.author | Antón, Paula | es_ES |
dc.contributor.author | Pacheco, Joaquín Antonio | es_ES |
dc.date.accessioned | 2024-07-29T11:14:11Z | |
dc.date.available | 2024-07-29T11:14:11Z | |
dc.date.issued | 2024-06-20 | |
dc.identifier.isbn | 9788413962009 | |
dc.identifier.uri | http://hdl.handle.net/10251/206757 | |
dc.description.abstract | [EN] Absenteeism in higher education is a problem that may involve institutional, economic, social, and individual consequences. The present work aims to analyse whether the way students manage their personal time could be an explanation for absenteeism rates. Authors used machine learning based methodology, combined with explainable artificial intelligence methods. This allowed them to design a two-levels analysis, it is to say from a global, and an individual perspective. Factors such as repeating a course have the most negative impact over class attendance. On the contrary, being able to submit an assignment before the deadline has the most positive impact over class attendance. The kind of academic career, the place of living or the hobbies has also influence over the absenteeism. | es_ES |
dc.format.extent | 8 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | es_ES |
dc.relation.ispartof | 10th International Conference on Higher Education Advances (HEAd’24) | |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Absenteeism | es_ES |
dc.subject | Higher education | es_ES |
dc.subject | Support vector machine | es_ES |
dc.subject | Explainable artificial intelligence | es_ES |
dc.subject | Shapley additive explanation | es_ES |
dc.subject | Time management | es_ES |
dc.title | Time management and absenteeism: studying the students through machine learning | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.4995/HEAd24.2024.17343 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Porras, S.; Sauvée, A.; Puche, JC.; Casado, S.; Antón, P.; Pacheco, JA. (2024). Time management and absenteeism: studying the students through machine learning. Editorial Universitat Politècnica de València. https://doi.org/10.4995/HEAd24.2024.17343 | es_ES |
dc.description.accrualMethod | OCS | es_ES |
dc.relation.conferencename | Tenth International Conference on Higher Education Advances | es_ES |
dc.relation.conferencedate | Junio 18-21, 2024 | es_ES |
dc.relation.conferenceplace | València, España | es_ES |
dc.relation.publisherversion | http://ocs.editorial.upv.es/index.php/HEAD/HEAd24/paper/view/17343 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | OCS\17343 | es_ES |
dc.contributor.funder | Instituto de Formación e Innovación Educativa - IFIE - Universidad de Burgos | es_ES |