- -

Time management and absenteeism: studying the students through machine learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Time management and absenteeism: studying the students through machine learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Porras, Santiago es_ES
dc.contributor.author Sauvée, Athénaïs es_ES
dc.contributor.author Puche, Julio César es_ES
dc.contributor.author Casado, Silvia es_ES
dc.contributor.author Antón, Paula es_ES
dc.contributor.author Pacheco, Joaquín Antonio es_ES
dc.date.accessioned 2024-07-29T11:14:11Z
dc.date.available 2024-07-29T11:14:11Z
dc.date.issued 2024-06-20
dc.identifier.isbn 9788413962009
dc.identifier.uri http://hdl.handle.net/10251/206757
dc.description.abstract [EN] Absenteeism in higher education is a problem that may involve institutional, economic, social, and individual consequences. The present work aims to analyse whether the way students manage their personal time could be an explanation for absenteeism rates. Authors used machine learning based methodology, combined with explainable artificial intelligence methods. This allowed them to design a two-levels analysis, it is to say from a global, and an individual perspective. Factors such as repeating a course have the most negative impact over class attendance. On the contrary, being able to submit an assignment before the deadline has the most positive impact over class attendance. The kind of academic career, the place of living or the hobbies has also influence over the absenteeism. es_ES
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 10th International Conference on Higher Education Advances (HEAd’24)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Absenteeism es_ES
dc.subject Higher education es_ES
dc.subject Support vector machine es_ES
dc.subject Explainable artificial intelligence es_ES
dc.subject Shapley additive explanation es_ES
dc.subject Time management es_ES
dc.title Time management and absenteeism: studying the students through machine learning es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/HEAd24.2024.17343
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Porras, S.; Sauvée, A.; Puche, JC.; Casado, S.; Antón, P.; Pacheco, JA. (2024). Time management and absenteeism: studying the students through machine learning. Editorial Universitat Politècnica de València. https://doi.org/10.4995/HEAd24.2024.17343 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename Tenth International Conference on Higher Education Advances es_ES
dc.relation.conferencedate Junio 18-21, 2024 es_ES
dc.relation.conferenceplace València, España es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/HEAD/HEAd24/paper/view/17343 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\17343 es_ES
dc.contributor.funder Instituto de Formación e Innovación Educativa - IFIE - Universidad de Burgos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem