- -

Unlocking the Potential of Machine Learning in Portfolio Selection: A Hybrid Approach with Genetic Optimization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unlocking the Potential of Machine Learning in Portfolio Selection: A Hybrid Approach with Genetic Optimization

Mostrar el registro completo del ítem

Alzaman, C. (2024). Unlocking the Potential of Machine Learning in Portfolio Selection: A Hybrid Approach with Genetic Optimization. Editorial Universitat Politècnica de València. 220-234. https://doi.org/10.4995/CARMA2024.2024.17554

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/208398

Ficheros en el ítem

Metadatos del ítem

Título: Unlocking the Potential of Machine Learning in Portfolio Selection: A Hybrid Approach with Genetic Optimization
Autor: Alzaman, Chaher
Fecha difusión:
Resumen:
[EN] In the field of financial market predictions, machine learning has been widely used to identify patterns and gain valuable insights. However, for success in portfolio selection, it is crucial to optimize factors that ...[+]
Palabras clave: Artificial Intelligence , Machine Learning , Optimization , Financial Markets , Predictive Analytics
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
ISBN: 9788413962016
Fuente:
6th International Conference on Advanced Research Methods and Analytics (CARMA 2024).
DOI: 10.4995/CARMA2024.2024.17554
Editorial:
Editorial Universitat Politècnica de València
Versión del editor: http://ocs.editorial.upv.es/index.php/CARMA/CARMA2024/paper/view/17554
Título del congreso: CARMA 2024 - 6th International Conference on Advanced Research Methods and Analytics
Fecha congreso: Junio 26-28, 2024
Tipo: Capítulo de libro Comunicación en congreso

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem