- -

Unlocking the Potential of Machine Learning in Portfolio Selection: A Hybrid Approach with Genetic Optimization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unlocking the Potential of Machine Learning in Portfolio Selection: A Hybrid Approach with Genetic Optimization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alzaman, Chaher es_ES
dc.date.accessioned 2024-09-20T08:15:55Z
dc.date.available 2024-09-20T08:15:55Z
dc.date.issued 2024-07-16
dc.identifier.isbn 9788413962016
dc.identifier.uri http://hdl.handle.net/10251/208398
dc.description.abstract [EN] In the field of financial market predictions, machine learning has been widely used to identify patterns and gain valuable insights. However, for success in portfolio selection, it is crucial to optimize factors that impact accuracy. This study focuses on combining machine learning and optimization to enhance stock selection and prediction capabilities. The work starts with hyperparameter optimization and utilizes three different machine learning algorithms: XGBoost, LSTM, and Deep RankNet. Our findings show a 40% improvement in results through the use of a genetic-based optimization technique, as well as a promising daily average return of 0.47% through a novel feature engineering approach. The study provides a framework for optimizing and learning in financial portfolio selection, with promising results for medium and small-sized traders. es_ES
dc.format.extent 15 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 6th International Conference on Advanced Research Methods and Analytics (CARMA 2024)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Artificial Intelligence es_ES
dc.subject Machine Learning es_ES
dc.subject Optimization es_ES
dc.subject Financial Markets es_ES
dc.subject Predictive Analytics es_ES
dc.title Unlocking the Potential of Machine Learning in Portfolio Selection: A Hybrid Approach with Genetic Optimization es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2024.2024.17554
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Alzaman, C. (2024). Unlocking the Potential of Machine Learning in Portfolio Selection: A Hybrid Approach with Genetic Optimization. Editorial Universitat Politècnica de València. 220-234. https://doi.org/10.4995/CARMA2024.2024.17554 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2024 - 6th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 26-28, 2024 es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2024/paper/view/17554 es_ES
dc.description.upvformatpinicio 220 es_ES
dc.description.upvformatpfin 234 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\17554 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem