Mostrar el registro sencillo del ítem
dc.contributor.author | Alzaman, Chaher | es_ES |
dc.date.accessioned | 2024-09-20T08:15:55Z | |
dc.date.available | 2024-09-20T08:15:55Z | |
dc.date.issued | 2024-07-16 | |
dc.identifier.isbn | 9788413962016 | |
dc.identifier.uri | http://hdl.handle.net/10251/208398 | |
dc.description.abstract | [EN] In the field of financial market predictions, machine learning has been widely used to identify patterns and gain valuable insights. However, for success in portfolio selection, it is crucial to optimize factors that impact accuracy. This study focuses on combining machine learning and optimization to enhance stock selection and prediction capabilities. The work starts with hyperparameter optimization and utilizes three different machine learning algorithms: XGBoost, LSTM, and Deep RankNet. Our findings show a 40% improvement in results through the use of a genetic-based optimization technique, as well as a promising daily average return of 0.47% through a novel feature engineering approach. The study provides a framework for optimizing and learning in financial portfolio selection, with promising results for medium and small-sized traders. | es_ES |
dc.format.extent | 15 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | es_ES |
dc.relation.ispartof | 6th International Conference on Advanced Research Methods and Analytics (CARMA 2024) | |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Artificial Intelligence | es_ES |
dc.subject | Machine Learning | es_ES |
dc.subject | Optimization | es_ES |
dc.subject | Financial Markets | es_ES |
dc.subject | Predictive Analytics | es_ES |
dc.title | Unlocking the Potential of Machine Learning in Portfolio Selection: A Hybrid Approach with Genetic Optimization | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.4995/CARMA2024.2024.17554 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Alzaman, C. (2024). Unlocking the Potential of Machine Learning in Portfolio Selection: A Hybrid Approach with Genetic Optimization. Editorial Universitat Politècnica de València. 220-234. https://doi.org/10.4995/CARMA2024.2024.17554 | es_ES |
dc.description.accrualMethod | OCS | es_ES |
dc.relation.conferencename | CARMA 2024 - 6th International Conference on Advanced Research Methods and Analytics | es_ES |
dc.relation.conferencedate | Junio 26-28, 2024 | es_ES |
dc.relation.publisherversion | http://ocs.editorial.upv.es/index.php/CARMA/CARMA2024/paper/view/17554 | es_ES |
dc.description.upvformatpinicio | 220 | es_ES |
dc.description.upvformatpfin | 234 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | OCS\17554 | es_ES |