- -

Unveiling New Insights From Textual Unstructured Big Data in Politics Through Deep Learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unveiling New Insights From Textual Unstructured Big Data in Politics Through Deep Learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Caliskan, Ufuk es_ES
dc.contributor.author Pappagallo, Angela es_ES
dc.contributor.author Ortame, Francesco es_ES
dc.contributor.author Bruno, Mauro es_ES
dc.contributor.author Pugliese, Francesco es_ES
dc.date.accessioned 2024-09-26T08:23:34Z
dc.date.available 2024-09-26T08:23:34Z
dc.date.issued 2024-07-16
dc.identifier.isbn 9788413962016
dc.identifier.uri http://hdl.handle.net/10251/208677
dc.description.abstract [EN] Over the past decade, social media platforms have undergone significant and rapid expansion. One of the key challenges has been effectively analysing the vast amount of unstructured user-generated data they produce. This research delves into the analysis of Italian Twitter data through the application of advanced deep learning models across three primary objectives: text classification, sentiment analysis, and hate analysis. Five cutting-edge models are evaluated, each utilizing distinct word embeddings.Furthermore, this study investigates the effects of processing emojis and emoticons in Italian tweets on sentiment and hate analysis. We compare model performances and suggest optimized approaches for each task. Finally, we apply these methodologies to real-world Twitter data and present our findings through multiple graphs and statistical analyses. This study demonstrates the possibility of extracting new insights and novel information from unstructured textual Big Data in Politics. es_ES
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 6th International Conference on Advanced Research Methods and Analytics (CARMA 2024)
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Politics es_ES
dc.subject Deep learning es_ES
dc.subject Artificial intelligence es_ES
dc.subject Big data es_ES
dc.subject Statistics es_ES
dc.subject Sentiment es_ES
dc.title Unveiling New Insights From Textual Unstructured Big Data in Politics Through Deep Learning es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2024.2024.17823
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Caliskan, U.; Pappagallo, A.; Ortame, F.; Bruno, M.; Pugliese, F. (2024). Unveiling New Insights From Textual Unstructured Big Data in Politics Through Deep Learning. En 6th International Conference on Advanced Research Methods and Analytics (CARMA 2024). Editorial Universitat Politècnica de València. 26-33. https://doi.org/10.4995/CARMA2024.2024.17823 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2024 - 6th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 26-28, 2024 es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2024/paper/view/17823 es_ES
dc.description.upvformatpinicio 26 es_ES
dc.description.upvformatpfin 33 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\17823 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem