- -

Role of surface chemistry in protein remodeling at the cell-material interface

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Role of surface chemistry in protein remodeling at the cell-material interface

Mostrar el registro completo del ítem

Llopis Hernández, V.; Rico Tortosa, PM.; Ballester Beltrán, J.; Moratal Pérez, D.; Salmerón Sánchez, M. (2011). Role of surface chemistry in protein remodeling at the cell-material interface. PLoS ONE. 6(5):19610-19620. https://doi.org/10.1371/journal.pone.0019610

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/28360

Ficheros en el ítem

Metadatos del ítem

Título: Role of surface chemistry in protein remodeling at the cell-material interface
Autor: Llopis Hernández, Virginia Rico Tortosa, Patricia María Ballester Beltrán, José Moratal Pérez, David Salmerón Sánchez, Manuel
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Fecha difusión:
Resumen:
Background: The cell-material interaction is a complex bi-directional and dynamic process that mimics to a certain extent the natural interactions of cells with the extracellular matrix. Cells tend to adhere and rearrange ...[+]
Palabras clave: Fibronectin , Focal adhesion kinase , Gelatinase A , Gelatinase B , Integrin , Scleroprotein , Transcription factor RUNX2 , Phosphotyrosine , Adsorption , Article , Atomic force microscopy , Biocompatibility , Cell adhesion , Cell interaction , Controlled study , Degradation , Focal adhesion , Human , Molecular dynamics , Nucleotide sequence , Protein conformation , Protein expression , Protein function , Protein localization , Protein modification , Protein phosphorylation , Protein secretion , Signal transduction , Surface property , Animal , Cell , Cell line , Chemistry , Extracellular matrix , Gene expression regulation , Metabolism , Mouse , Wettability , Animals , Cells , Fibronectins , Focal Adhesion Protein-Tyrosine Kinases , Humans , Mice , Microscopy, Atomic Force
Derechos de uso: Reconocimiento (by)
Fuente:
PLoS ONE. (issn: 1932-6203 )
DOI: 10.1371/journal.pone.0019610
Editorial:
Public Library of Science
Versión del editor: http://www.plosone.org/article/info:doi/10.1371/journal.pone.0019610
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-01/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/
Agradecimientos:
The support of the Spanish Ministry of Science and Innovation through project MAT2009-14440-C02-01 is acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, ...[+]
Tipo: Artículo

References

Grinnell, F. (1986). Focal adhesion sites and the removal of substratum-bound fibronectin. The Journal of Cell Biology, 103(6), 2697-2706. doi:10.1083/jcb.103.6.2697

Hynes, R. O. (2002). Integrins. Cell, 110(6), 673-687. doi:10.1016/s0092-8674(02)00971-6

García, A. J. (2005). Get a grip: integrins in cell–biomaterial interactions. Biomaterials, 26(36), 7525-7529. doi:10.1016/j.biomaterials.2005.05.029 [+]
Grinnell, F. (1986). Focal adhesion sites and the removal of substratum-bound fibronectin. The Journal of Cell Biology, 103(6), 2697-2706. doi:10.1083/jcb.103.6.2697

Hynes, R. O. (2002). Integrins. Cell, 110(6), 673-687. doi:10.1016/s0092-8674(02)00971-6

García, A. J. (2005). Get a grip: integrins in cell–biomaterial interactions. Biomaterials, 26(36), 7525-7529. doi:10.1016/j.biomaterials.2005.05.029

Mitra, S. K., Hanson, D. A., & Schlaepfer, D. D. (2005). Focal adhesion kinase: in command and control of cell motility. Nature Reviews Molecular Cell Biology, 6(1), 56-68. doi:10.1038/nrm1549

SIPE, J. D. (2002). Tissue Engineering and Reparative Medicine. Annals of the New York Academy of Sciences, 961(1), 1-9. doi:10.1111/j.1749-6632.2002.tb03040.x

Griffith, L. G. (2002). Tissue Engineering--Current Challenges and Expanding Opportunities. Science, 295(5557), 1009-1014. doi:10.1126/science.1069210

Altankov, G., & Groth, T. (1994). Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. Journal of Materials Science: Materials in Medicine, 5(9-10), 732-737. doi:10.1007/bf00120366

Avnur, Z., & Geiger, B. (1981). The removal of extracellular fibronectin from areas of cell-substrate contact. Cell, 25(1), 121-132. doi:10.1016/0092-8674(81)90236-1

Altankov, G., Groth, T., Krasteva, N., Albrecht, W., & Paul, D. (1997). Morphological evidence for a different fibronectin receptor organization and function during fibroblast adhesion on hydrophilic and hydrophobic glass substrata. Journal of Biomaterials Science, Polymer Edition, 8(9), 721-740. doi:10.1163/156856297x00524

Tzoneva, R., Groth, T., Altankov, G., & Paul, D. (2002). Journal of Materials Science: Materials in Medicine, 13(12), 1235-1244. doi:10.1023/a:1021131113711

Altankov, G., & Groth, T. (1996). Fibronectin matrix formation and the biocompatibility of materials. Journal of Materials Science: Materials in Medicine, 7(7), 425-429. doi:10.1007/bf00122012

Pompe, T., Keller, K., Mitdank, C., & Werner, C. (2005). Fibronectin fibril pattern displays the force balance of cell–matrix adhesion. European Biophysics Journal, 34(8), 1049-1056. doi:10.1007/s00249-005-0490-z

Heymans, S., Pauschinger, M., De Palma, A., Kallwellis-Opara, A., Rutschow, S., Swinnen, M., … Pinto, Y. M. (2006). Inhibition of Urokinase-Type Plasminogen Activator or Matrix Metalloproteinases Prevents Cardiac Injury and Dysfunction During Viral Myocarditis. Circulation, 114(6), 565-573. doi:10.1161/circulationaha.105.591032

Holmbeck, K., Bianco, P., Caterina, J., Yamada, S., Kromer, M., Kuznetsov, S. A., … Birkedal-Hansen, H. (1999). MT1-MMP-Deficient Mice Develop Dwarfism, Osteopenia, Arthritis, and Connective Tissue Disease due to Inadequate Collagen Turnover. Cell, 99(1), 81-92. doi:10.1016/s0092-8674(00)80064-1

Curino, A. C., Engelholm, L. H., Yamada, S. S., Holmbeck, K., Lund, L. R., Molinolo, A. A., … Bugge, T. H. (2005). Intracellular collagen degradation mediated by uPARAP/Endo180 is a major pathway of extracellular matrix turnover during malignancy. The Journal of Cell Biology, 169(6), 977-985. doi:10.1083/jcb.200411153

Koblinski, J. E., Ahram, M., & Sloane, B. F. (2000). Unraveling the role of proteases in cancer. Clinica Chimica Acta, 291(2), 113-135. doi:10.1016/s0009-8981(99)00224-7

Mohamed, M. M., & Sloane, B. F. (2006). multifunctional enzymes in cancer. Nature Reviews Cancer, 6(10), 764-775. doi:10.1038/nrc1949

Buck, M. R., Karustis, D. G., Day, N. A., Honn, K. V., & Sloane, B. F. (1992). Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochemical Journal, 282(1), 273-278. doi:10.1042/bj2820273

Page-McCaw, A., Ewald, A. J., & Werb, Z. (2007). Matrix metalloproteinases and the regulation of tissue remodelling. Nature Reviews Molecular Cell Biology, 8(3), 221-233. doi:10.1038/nrm2125

Rodríguez, D., Morrison, C. J., & Overall, C. M. (2010). Matrix metalloproteinases: What do they not do? New substrates and biological roles identified by murine models and proteomics. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1803(1), 39-54. doi:10.1016/j.bbamcr.2009.09.015

Raynor, J. E., Capadona, J. R., Collard, D. M., Petrie, T. A., & García, A. J. (2009). Polymer brushes and self-assembled monolayers: Versatile platforms to control cell adhesion to biomaterials (Review). Biointerphases, 4(2), FA3-FA16. doi:10.1116/1.3089252

Keselowsky, B. G., Collard, D. M., & García, A. J. (2003). Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research Part A, 66A(2), 247-259. doi:10.1002/jbm.a.10537

Martins, M. C. L., Ratner, B. D., & Barbosa, M. A. (2003). Protein adsorption on mixtures of hydroxyl- and methyl-terminated alkanethiols self-assembled monolayers. Journal of Biomedical Materials Research, 67A(1), 158-171. doi:10.1002/jbm.a.10096

Rodrigues, S. N., Gonçalves, I. C., Martins, M. C. L., Barbosa, M. A., & Ratner, B. D. (2006). Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. Biomaterials, 27(31), 5357-5367. doi:10.1016/j.biomaterials.2006.06.010

Rico, P., Hernández, J. C. R., Moratal, D., Altankov, G., Pradas, M. M., & Salmerón-Sánchez, M. (2009). Substrate-Induced Assembly of Fibronectin into Networks: Influence of Surface Chemistry and Effect on Osteoblast Adhesion. Tissue Engineering Part A, 15(11), 3271-3281. doi:10.1089/ten.tea.2009.0141

Ugarova, T. P., Zamarron, C., Veklich, Y., Bowditch, R. D., Ginsberg, M. H., Weisel, J. W., & Plow, E. F. (1995). Conformational Transitions in the Cell Binding Domain of Fibronectin. Biochemistry, 34(13), 4457-4466. doi:10.1021/bi00013a039

McClary, K. B., Ugarova, T., & Grainger, D. W. (2000). Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold. Journal of Biomedical Materials Research, 50(3), 428-439. doi:10.1002/(sici)1097-4636(20000605)50:3<428::aid-jbm18>3.0.co;2-h

SCHOEN, R. C., BENTLEY, K. L., & KLEBE, R. J. (1982). Monoclonal Antibody Against Human Fibronectin Which Inhibits Cell Attachment. Hybridoma, 1(2), 99-108. doi:10.1089/hyb.1.1982.1.99

llić, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., … Aizawa, S. (1995). Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature, 377(6549), 539-544. doi:10.1038/377539a0

Frisch, S. M., Vuori, K., Ruoslahti, E., & Chan-Hui, P. Y. (1996). Control of adhesion-dependent cell survival by focal adhesion kinase. The Journal of Cell Biology, 134(3), 793-799. doi:10.1083/jcb.134.3.793

Zhao, J.-H., Reiske, H., & Guan, J.-L. (1998). Regulation of the Cell Cycle by Focal Adhesion Kinase. The Journal of Cell Biology, 143(7), 1997-2008. doi:10.1083/jcb.143.7.1997

Thannickal, V. J., Lee, D. Y., White, E. S., Cui, Z., Larios, J. M., Chacon, R., … Thomas, P. E. (2003). Myofibroblast Differentiation by Transforming Growth Factor-β1 Is Dependent on Cell Adhesion and Integrin Signaling via Focal Adhesion Kinase. Journal of Biological Chemistry, 278(14), 12384-12389. doi:10.1074/jbc.m208544200

Schaller, M. D., Hildebrand, J. D., Shannon, J. D., Fox, J. W., Vines, R. R., & Parsons, J. T. (1994). Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Molecular and Cellular Biology, 14(3), 1680-1688. doi:10.1128/mcb.14.3.1680

Reiske, H. R., Kao, S.-C., Cary, L. A., Guan, J.-L., Lai, J.-F., & Chen, H.-C. (1999). Requirement of Phosphatidylinositol 3-Kinase in Focal Adhesion Kinase-promoted Cell Migration. Journal of Biological Chemistry, 274(18), 12361-12366. doi:10.1074/jbc.274.18.12361

Shin, H. (2007). Fabrication methods of an engineered microenvironment for analysis of cell–biomaterial interactions. Biomaterials, 28(2), 126-133. doi:10.1016/j.biomaterials.2006.08.007

Wilson, C. J., Clegg, R. E., Leavesley, D. I., & Pearcy, M. J. (2005). Mediation of Biomaterial–Cell Interactions by Adsorbed Proteins: A Review. Tissue Engineering, 11(1-2), 1-18. doi:10.1089/ten.2005.11.1

Palacio, M. L. B., Schricker, S. R., & Bhushan, B. (2010). Bioadhesion of various proteins on random, diblock and triblock copolymer surfaces and the effect of pH conditions. Journal of The Royal Society Interface, 8(58), 630-640. doi:10.1098/rsif.2010.0557

Barrias, C. C., Martins, M. C. L., Almeida-Porada, G., Barbosa, M. A., & Granja, P. L. (2009). The correlation between the adsorption of adhesive proteins and cell behaviour on hydroxyl-methyl mixed self-assembled monolayers. Biomaterials, 30(3), 307-316. doi:10.1016/j.biomaterials.2008.09.048

Michael, K. E., Vernekar, V. N., Keselowsky, B. G., Meredith, J. C., Latour, R. A., & García, A. J. (2003). Adsorption-Induced Conformational Changes in Fibronectin Due to Interactions with Well-Defined Surface Chemistries. Langmuir, 19(19), 8033-8040. doi:10.1021/la034810a

Gugutkov, D., González-García, C., Rodríguez Hernández, J. C., Altankov, G., & Salmerón-Sánchez, M. (2009). Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 25(18), 10893-10900. doi:10.1021/la9012203

Keselowsky, B. G., Collard, D. M., & Garcı́a, A. J. (2004). Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials, 25(28), 5947-5954. doi:10.1016/j.biomaterials.2004.01.062

Arima, Y., & Iwata, H. (2007). Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials, 28(20), 3074-3082. doi:10.1016/j.biomaterials.2007.03.013

Michael, K. E., Dumbauld, D. W., Burns, K. L., Hanks, S. K., & García, A. J. (2009). Focal Adhesion Kinase Modulates Cell Adhesion Strengthening via Integrin Activation. Molecular Biology of the Cell, 20(9), 2508-2519. doi:10.1091/mbc.e08-01-0076

Sieg, D. J., Hauck, C. R., Ilic, D., Klingbeil, C. K., Schaefer, E., Damsky, C. H., & Schlaepfer, D. D. (2000). FAK integrates growth-factor and integrin signals to promote cell migration. Nature Cell Biology, 2(5), 249-256. doi:10.1038/35010517

Wang, H.-B., Dembo, M., Hanks, S. K., & Wang, Y. -l. (2001). Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proceedings of the National Academy of Sciences, 98(20), 11295-11300. doi:10.1073/pnas.201201198

Webb, D. J., Donais, K., Whitmore, L. A., Thomas, S. M., Turner, C. E., Parsons, J. T., & Horwitz, A. F. (2004). FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature Cell Biology, 6(2), 154-161. doi:10.1038/ncb1094

Kaibuchi, K., Kuroda, S., & Amano, M. (1999). Regulation of the Cytoskeleton and Cell Adhesion by the Rho Family GTPases in Mammalian Cells. Annual Review of Biochemistry, 68(1), 459-486. doi:10.1146/annurev.biochem.68.1.459

Chrzanowska-Wodnicka, M., & Burridge, K. (1996). Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. The Journal of Cell Biology, 133(6), 1403-1415. doi:10.1083/jcb.133.6.1403

GALLAGHER, P. J., PAUL HERRING, B., & STULL, J. T. (1997). Journal of Muscle Research and Cell Motility, 18(1), 1-16. doi:10.1023/a:1018616814417

Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J., & Keely, P. J. (2003). ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. The Journal of Cell Biology, 163(3), 583-595. doi:10.1083/jcb.200305010

González-García, C., Sousa, S. R., Moratal, D., Rico, P., & Salmerón-Sánchez, M. (2010). Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. Colloids and Surfaces B: Biointerfaces, 77(2), 181-190. doi:10.1016/j.colsurfb.2010.01.021

Bott, K., Upton, Z., Schrobback, K., Ehrbar, M., Hubbell, J. A., Lutolf, M. P., & Rizzi, S. C. (2010). The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials, 31(32), 8454-8464. doi:10.1016/j.biomaterials.2010.07.046

Phelps, E. A., Landázuri, N., Thulé, P. M., Taylor, W. R., & García, A. J. (2009). Bioartificial matrices for therapeutic vascularization. Proceedings of the National Academy of Sciences, 107(8), 3323-3328. doi:10.1073/pnas.0905447107

Lutolf, M. P., Lauer-Fields, J. L., Schmoekel, H. G., Metters, A. T., Weber, F. E., Fields, G. B., & Hubbell, J. A. (2003). Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proceedings of the National Academy of Sciences, 100(9), 5413-5418. doi:10.1073/pnas.0737381100

Schneider, R. K., Puellen, A., Kramann, R., Raupach, K., Bornemann, J., Knuechel, R., … Neuss, S. (2010). The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Biomaterials, 31(3), 467-480. doi:10.1016/j.biomaterials.2009.09.059

Uchida, M., Shima, M., Shimoaka, T., Fujieda, A., Obara, K., Suzuki, H., … Kawaguchi, H. (2000). Regulation of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) by bone resorptive factors in osteoblastic cells. Journal of Cellular Physiology, 185(2), 207-214. doi:10.1002/1097-4652(200011)185:2<207::aid-jcp5>3.0.co;2-j

Kenny, H. A., Kaur, S., Coussens, L. M., & Lengyel, E. (2008). The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. Journal of Clinical Investigation, 118(4), 1367-1379. doi:10.1172/jci33775

Yang, C.-M., Chien, C.-S., Yao, C.-C., Hsiao, L.-D., Huang, Y.-C., & Wu, C. B. (2004). Mechanical Strain Induces Collagenase-3 (MMP-13) Expression in MC3T3-E1 Osteoblastic Cells. Journal of Biological Chemistry, 279(21), 22158-22165. doi:10.1074/jbc.m401343200

Wan, R., Mo, Y., Zhang, X., Chien, S., Tollerud, D. J., & Zhang, Q. (2008). Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation. Toxicology and Applied Pharmacology, 233(2), 276-285. doi:10.1016/j.taap.2008.08.022

Zambuzzi, W. F., Paiva, K. B. S., Menezes, R., Oliveira, R. C., Taga, R., & Granjeiro, J. M. (2009). MMP-9 and CD68+ cells are required for tissue remodeling in response to natural hydroxyapatite. Journal of Molecular Histology, 40(4), 301-309. doi:10.1007/s10735-009-9241-2

Chung, A. S., Waldeck, H., Schmidt, D. R., & Kao, W. J. (2009). Monocyte inflammatory and matrix remodeling response modulated by grafted ECM-derived ligand concentration. Journal of Biomedical Materials Research Part A, 91A(3), 742-752. doi:10.1002/jbm.a.32259

Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., & Karsenty, G. (1997). Osf2/Cbfa1: A Transcriptional Activator of Osteoblast Differentiation. Cell, 89(5), 747-754. doi:10.1016/s0092-8674(00)80257-3

Hayami, T., Kapila, Y. L., & Kapila, S. (2008). MMP-1 (collagenase-1) and MMP-13 (collagenase-3) differentially regulate markers of osteoblastic differentiation in osteogenic cells. Matrix Biology, 27(8), 682-692. doi:10.1016/j.matbio.2008.07.005

Pratap, J., Javed, A., Languino, L. R., van Wijnen, A. J., Stein, J. L., Stein, G. S., & Lian, J. B. (2005). The Runx2 Osteogenic Transcription Factor Regulates Matrix Metalloproteinase 9 in Bone Metastatic Cancer Cells and Controls Cell Invasion. Molecular and Cellular Biology, 25(19), 8581-8591. doi:10.1128/mcb.25.19.8581-8591.2005

Hess, J., Porte, D., Munz, C., & Angel, P. (2001). AP-1 and Cbfa/Runt Physically Interact and Regulate Parathyroid Hormone-dependent MMP13 Expression in Osteoblasts through a New Osteoblast-specific Element 2/AP-1 Composite Element. Journal of Biological Chemistry, 276(23), 20029-20038. doi:10.1074/jbc.m010601200

Rouahi, M., Champion, E., Hardouin, P., & Anselme, K. (2006). Quantitative kinetic analysis of gene expression during human osteoblastic adhesion on orthopaedic materials. Biomaterials, 27(14), 2829-2844. doi:10.1016/j.biomaterials.2006.01.001

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem