Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b
Long, J. R., & Yaghi, O. M. (2009). The pervasive chemistry of metal–organic frameworks. Chemical Society Reviews, 38(5), 1213. doi:10.1039/b903811f
Murray, L. J., Dincă, M., & Long, J. R. (2009). Hydrogen storage in metal–organic frameworks. Chemical Society Reviews, 38(5), 1294. doi:10.1039/b802256a
[+]
Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b
Long, J. R., & Yaghi, O. M. (2009). The pervasive chemistry of metal–organic frameworks. Chemical Society Reviews, 38(5), 1213. doi:10.1039/b903811f
Murray, L. J., Dincă, M., & Long, J. R. (2009). Hydrogen storage in metal–organic frameworks. Chemical Society Reviews, 38(5), 1294. doi:10.1039/b802256a
Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-714. doi:10.1038/nature01650
Yaghi, O. M. (2007). A tale of two entanglements. Nature Materials, 6(2), 92-93. doi:10.1038/nmat1824
Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924
Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f
Li, J.-R., Kuppler, R. J., & Zhou, H.-C. (2009). Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 38(5), 1477. doi:10.1039/b802426j
Gücüyener, C., van den Bergh, J., Gascon, J., & Kapteijn, F. (2010). Ethane/Ethene Separation Turned on Its Head: Selective Ethane Adsorption on the Metal−Organic Framework ZIF-7 through a Gate-Opening Mechanism. Journal of the American Chemical Society, 132(50), 17704-17706. doi:10.1021/ja1089765
Wang, Z., & Cohen, S. M. (2009). Postsynthetic modification of metal–organic frameworks. Chemical Society Reviews, 38(5), 1315. doi:10.1039/b802258p
Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie, 120(22), 4212-4216. doi:10.1002/ange.200705998
Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie International Edition, 47(22), 4144-4148. doi:10.1002/anie.200705998
Juan-Alcañiz, J., Ramos-Fernandez, E. V., Lafont, U., Gascon, J., & Kapteijn, F. (2010). Building MOF bottles around phosphotungstic acid ships: One-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts. Journal of Catalysis, 269(1), 229-241. doi:10.1016/j.jcat.2009.11.011
Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y., & Kitagawa, S. (2007). Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis. Journal of the American Chemical Society, 129(9), 2607-2614. doi:10.1021/ja067374y
GASCON, J., AKTAY, U., HERNANDEZALONSO, M., VANKLINK, G., & KAPTEIJN, F. (2009). Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 261(1), 75-87. doi:10.1016/j.jcat.2008.11.010
Couck, S., Denayer, J. F. M., Baron, G. V., Rémy, T., Gascon, J., & Kapteijn, F. (2009). An Amine-Functionalized MIL-53 Metal−Organic Framework with Large Separation Power for CO2and CH4. Journal of the American Chemical Society, 131(18), 6326-6327. doi:10.1021/ja900555r
Savonnet, M., Bazer-Bachi, D., Bats, N., Perez-Pellitero, J., Jeanneau, E., Lecocq, V., … Farrusseng, D. (2010). Generic Postfunctionalization Route from Amino-Derived Metal−Organic Frameworks. Journal of the American Chemical Society, 132(13), 4518-4519. doi:10.1021/ja909613e
Ahnfeldt, T., Guillou, N., Gunzelmann, D., Margiolaki, I., Loiseau, T., Férey, G., … Stock, N. (2009). [Al4(OH)2(OCH3)4(H2N-bdc)3]⋅x H2O: A 12-Connected Porous Metal-Organic Framework with an Unprecedented Aluminum-Containing Brick. Angewandte Chemie, 121(28), 5265-5268. doi:10.1002/ange.200901409
Ahnfeldt, T., Guillou, N., Gunzelmann, D., Margiolaki, I., Loiseau, T., Férey, G., … Stock, N. (2009). [Al4(OH)2(OCH3)4(H2N-bdc)3]⋅x H2O: A 12-Connected Porous Metal-Organic Framework with an Unprecedented Aluminum-Containing Brick. Angewandte Chemie International Edition, 48(28), 5163-5166. doi:10.1002/anie.200901409
Kitagawa, S., Kitaura, R., & Noro, S. (2004). Funktionale poröse Koordinationspolymere. Angewandte Chemie, 116(18), 2388-2430. doi:10.1002/ange.200300610
Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610
Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., & Pastré, J. (2006). Metal–organic frameworks—prospective industrial applications. J. Mater. Chem., 16(7), 626-636. doi:10.1039/b511962f
Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J., & Kim, K. (2000). A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature, 404(6781), 982-986. doi:10.1038/35010088
Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084
Wang, Z., Chen, G., & Ding, K. (2009). Self-Supported Catalysts. Chemical Reviews, 109(2), 322-359. doi:10.1021/cr800406u
Bernini, M. C., Gándara, F., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., Brusau, E. V., … Monge, M. Á. (2009). Reversible Breaking and Forming of Metal-Ligand Coordination Bonds: Temperature-Triggered Single-Crystal to Single-Crystal Transformation in a Metal-Organic Framework. Chemistry - A European Journal, 15(19), 4896-4905. doi:10.1002/chem.200802385
Gándara, F., Gomez-Lor, B., Gutiérrez-Puebla, E., Iglesias, M., Monge, M. A., Proserpio, D. M., & Snejko, N. (2008). An Indium Layered MOF as Recyclable Lewis Acid Catalyst. Chemistry of Materials, 20(1), 72-76. doi:10.1021/cm071079a
LLABRESIXAMENA, F., ABAD, A., CORMA, A., & GARCIA, H. (2007). MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF. Journal of Catalysis, 250(2), 294-298. doi:10.1016/j.jcat.2007.06.004
LLABRESIXAMENA, F., CASANOVA, O., GALIASSOTAILLEUR, R., GARCIA, H., & CORMA, A. (2008). Metal organic frameworks (MOFs) as catalysts: A combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation. Journal of Catalysis, 255(2), 220-227. doi:10.1016/j.jcat.2008.02.011
Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., … Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186-10191. doi:10.1073/pnas.0602439103
Baburin, I. A., Leoni, S., & Seifert, G. (2008). Enumeration of Not-Yet-Synthesized Zeolitic Zinc Imidazolate MOF Networks: A Topological and DFT Approach. The Journal of Physical Chemistry B, 112(31), 9437-9443. doi:10.1021/jp801681w
Chui, S. S. (1999). A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science, 283(5405), 1148-1150. doi:10.1126/science.283.5405.1148
Schlichte, K., Kratzke, T., & Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1-2), 81-88. doi:10.1016/j.micromeso.2003.12.027
Young, D. A., Freedman, T. B., Lipp, E. D., & Nafie, L. A. (1986). Vibrational circular dichroism in transition-metal complexes. 2. Ion association, ring conformation, and ring currents of ethylenediamine ligands. Journal of the American Chemical Society, 108(23), 7255-7263. doi:10.1021/ja00283a021
Huisgen, R., Knorr, R., Möbius, L., & Szeimies, G. (1965). 1.3-Dipolare Cycloadditionen, XXIII. Einige Beobachtungen zur Addition organischer Azide an CC-Dreifachbindungen. Chemische Berichte, 98(12), 4014-4021. doi:10.1002/cber.19650981228
Huisgen, R. (1989). Kinetics and reaction mechanisms: selected examples from the experience of forty years. Pure and Applied Chemistry, 61(4), 613-628. doi:10.1351/pac198961040613
Bock, V. D., Hiemstra, H., & van Maarseveen, J. H. (2006). CuI-Catalyzed Alkyne-Azide «Click» Cycloadditions from a Mechanistic and Synthetic Perspective. European Journal of Organic Chemistry, 2006(1), 51-68. doi:10.1002/ejoc.200500483
Meldal, M., & Tornøe, C. W. (2008). Cu-Catalyzed Azide−Alkyne Cycloaddition. Chemical Reviews, 108(8), 2952-3015. doi:10.1021/cr0783479
Appukkuttan, P., & Van der Eycken, E. (2008). Recent Developments in Microwave-Assisted, Transition-Metal-Catalysed C–C and C–N Bond-Forming Reactions. European Journal of Organic Chemistry, 2008(7), 1133-1155. doi:10.1002/ejoc.200701056
Kappe, C. O., & Van der Eycken, E. (2010). Click chemistry under non-classical reaction conditions. Chem. Soc. Rev., 39(4), 1280-1290. doi:10.1039/b901973c
Anderson, J. A., & García, M. F. (2005). Supported Metals in Catalysis. Catalytic Science Series. doi:10.1142/p354
Kaneda, K., Ebitani, K., Mizugaki, T., & Mori, K. (2006). Design of High-Performance Heterogeneous Metal Catalysts for Green and Sustainable Chemistry. Bulletin of the Chemical Society of Japan, 79(7), 981-1016. doi:10.1246/bcsj.79.981
Lipshutz, B. H., & Taft, B. R. (2006). Heterogeneous Copper-in-Charcoal-Catalyzed Click Chemistry. Angewandte Chemie, 118(48), 8415-8418. doi:10.1002/ange.200603726
Lipshutz, B. H., & Taft, B. R. (2006). Heterogeneous Copper-in-Charcoal-Catalyzed Click Chemistry. Angewandte Chemie International Edition, 45(48), 8235-8238. doi:10.1002/anie.200603726
Lee, C.-T., Huang, S., & Lipshutz, B. (2009). Copper-in-Charcoal-Catalyzed, Tandem One-Pot Diazo Transfer-Click Reactions. Advanced Synthesis & Catalysis, 351(18), 3139-3142. doi:10.1002/adsc.200900604
Chassaing, S., Sani Souna Sido, A., Alix, A., Kumarraja, M., Pale, P., & Sommer, J. (2008). «Click Chemistry» in Zeolites: Copper(I) Zeolites as New Heterogeneous and Ligand-Free Catalysts for the Huisgen [3+2] Cycloaddition. Chemistry - A European Journal, 14(22), 6713-6721. doi:10.1002/chem.200800479
Jlalia, I., Elamari, H., Meganem, F., Herscovici, J., & Girard, C. (2008). Copper(I)-doped Wyoming’s montmorillonite for the synthesis of disubstituted 1,2,3-triazoles. Tetrahedron Letters, 49(48), 6756-6758. doi:10.1016/j.tetlet.2008.09.031
Li, P., Wang, L., & Zhang, Y. (2008). SiO2–NHC–Cu(I): an efficient and reusable catalyst for [3+2] cycloaddition of organic azides and terminal alkynes under solvent-free reaction conditions at room temperature. Tetrahedron, 64(48), 10825-10830. doi:10.1016/j.tet.2008.09.021
Chtchigrovsky, M., Primo, A., Gonzalez, P., Molvinger, K., Robitzer, M., Quignard, F., & Taran, F. (2009). Functionalized Chitosan as a Green, Recyclable, Biopolymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition. Angewandte Chemie, 121(32), 6030-6034. doi:10.1002/ange.200901309
Chtchigrovsky, M., Primo, A., Gonzalez, P., Molvinger, K., Robitzer, M., Quignard, F., & Taran, F. (2009). Functionalized Chitosan as a Green, Recyclable, Biopolymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition. Angewandte Chemie International Edition, 48(32), 5916-5920. doi:10.1002/anie.200901309
Luz, I., Llabrés i Xamena, F. X., & Corma, A. (2010). Bridging homogeneous and heterogeneous catalysis with MOFs: «Click» reactions with Cu-MOF catalysts. Journal of Catalysis, 276(1), 134-140. doi:10.1016/j.jcat.2010.09.010
Chinchilla, R., & Nájera, C. (2007). The Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry†. Chemical Reviews, 107(3), 874-922. doi:10.1021/cr050992x
Corma, A., Juárez, R., Boronat, M., Sánchez, F., Iglesias, M., & García, H. (2011). Gold catalyzes the Sonogashira coupling reaction without the requirement of palladium impurities. Chem. Commun., 47(5), 1446-1448. doi:10.1039/c0cc04564k
Posset, T., Guenther, J., Pope, J., Oeser, T., & Blümel, J. (2011). Immobilized Sonogashira catalyst systems: new insights by multinuclear HRMAS NMR studies. Chemical Communications, 47(7), 2059. doi:10.1039/c0cc04194g
Gruber, M. (2004). Palladium on activated carbon: a valuable heterogeneous catalyst for one-pot multi-step synthesis. Applied Catalysis A: General, 265(2), 161-169. doi:10.1016/j.apcata.2004.01.012
Chouzier, S., Gruber, M., & Djakovitch, L. (2004). New hetero-bimetallic Pd-Cu catalysts for the one-pot indole synthesis via the Sonogashira reaction. Journal of Molecular Catalysis A: Chemical, 212(1-2), 43-52. doi:10.1016/j.molcata.2003.11.027
Gu, S., Xu, D., & Chen, W. (2011). Heterobimetallic complexes containing an N-heterocyclic carbene based multidentate ligand and catalyzed tandem click/Sonogashira reactions. Dalton Transactions, 40(7), 1576. doi:10.1039/c0dt01211d
A. Alanine S. Burner B. Buettelmann N. M. Heitz G. Jaeschke E. Pinard R. Wyler 2001
S. S. Bhagwat L. M. Gayo B. Stein Q. Chao A. Gangloff J. Mckie K. Rice PCT Int. Appl. WO 0055137, 2000
C. N. Johnson G. Stemp PCT Int. Appl . WO 0021950, 2000
H. B. Broughton J. J. Kulagowski P. D. Leeson I. M. Mawer PCT Int. Appl. WO 9421628, 1994
Kapples, K. J., & Shutske, G. M. (1997). Synthesis of 1-alkyl-2,3-dihydro-2-(4-pyridinyl)-1H-isoindoles as potential selective serotonin reuptake inhibitors. Journal of Heterocyclic Chemistry, 34(4), 1335-1338. doi:10.1002/jhet.5570340440
M. Yamada S. Hamamoto K. Hayashi K. Takaoka H Matsukura M. Yotsuji K. Onezawa K. Ojima T. Takamatsu K. Taya H. Yamamoto T. Kiyoto H. Kotsubo PCT Int. Appl. WO 9921849, 1999
Alvarez, R., Velazquez, S., San-Felix, A., Aquaro, S., Clercq, E. D., Perno, C.-F., … Camarasa, M. J. (1994). 1,2,3-Triazole-[2,5-Bis-O-(tert-butyldimethylsilyl)-.beta.-D-ribofuranosyl]-3’-spiro-5’’-(4’’-amino-1’’,2’’-oxathiole 2’’,2’’-dioxide) (TSAO) Analogs: Synthesis and Anti-HIV-1 Activity. Journal of Medicinal Chemistry, 37(24), 4185-4194. doi:10.1021/jm00050a015
Genin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., … Yagi, B. H. (2000). Substituent Effects on the Antibacterial Activity of Nitrogen−Carbon-Linked (Azolylphenyl)oxazolidinones with Expanded Activity Against the Fastidious Gram-Negative OrganismsHaemophilusinfluenzaeandMoraxellacatarrhalis. Journal of Medicinal Chemistry, 43(5), 953-970. doi:10.1021/jm990373e
KUME, M., KUBOTA, T., KIMURA, Y., NAKASHIMIZU, H., MOTOKAWA, K., & NAKANO, M. (1993). Orally active cephalosporins. II. Synthesis and structure-activity relationships of new 7.BETA.-((Z)-2-(2-aminothiazol-4-yl)-2-hydroxyiminoacetamido)-cephalosporins with 1,2,3-triazole in C-3 side chain. The Journal of Antibiotics, 46(1), 177-192. doi:10.7164/antibiotics.46.177
V. S. Georgiev B. Loev R. Mack J. Musser 1981
TATSUTA, K., IKEDA, Y., & MIURA, S. (1996). Synthesis and Glycosidase Inhibitory Activities of Nagstatin Triazole Analogs. The Journal of Antibiotics, 49(8), 836-838. doi:10.7164/antibiotics.49.836
Roma, G., Di Braccio, M., Grossi, G., Mattioli, F., & Ghia, M. (2000). 1,8-Naphthyridines IV. 9-Substituted N,N-dialkyl-5-(alkylamino or cycloalkylamino) [1,2,4]triazolo[4,3-a][1,8]naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. European Journal of Medicinal Chemistry, 35(11), 1021-1035. doi:10.1016/s0223-5234(00)01175-2
Krülle, T. M., de la Fuente, C., Pickering, L., Aplin, R. T., Tsitsanou, K. E., Zographos, S. E., … Fleet, G. W. J. (1997). Triazole carboxylic acids as anionic sugar mimics? Inhibition of glycogen phosphorylase by a d-glucotriazole carboxylate. Tetrahedron: Asymmetry, 8(22), 3807-3820. doi:10.1016/s0957-4166(97)00561-2
Couty, F., Durrat, F., & Prim, D. (2004). Expeditive synthesis of homochiral fused tri- and tetrazoles–piperazines from β-amino alcohols. Tetrahedron Letters, 45(19), 3725-3728. doi:10.1016/j.tetlet.2004.03.092
Chowdhury, C., Mandal, S. B., & Achari, B. (2005). Palladium–copper catalysed heteroannulation of acetylenic compounds: an expeditious synthesis of isoindoline fused with triazoles. Tetrahedron Letters, 46(49), 8531-8534. doi:10.1016/j.tetlet.2005.10.006
[-]