- -

Bifunctional metal organic framework catalysts for multistep reactions: MOF-Cu(BTC)-[Pd] Catalyst for one-pot heteroannulation of acetylenic compounds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bifunctional metal organic framework catalysts for multistep reactions: MOF-Cu(BTC)-[Pd] Catalyst for one-pot heteroannulation of acetylenic compounds

Mostrar el registro completo del ítem

Arnanz, A.; Pintado-Sierra, M.; Corma Canós, A.; Iglesias, M.; Sánchez Alonso, F. (2012). Bifunctional metal organic framework catalysts for multistep reactions: MOF-Cu(BTC)-[Pd] Catalyst for one-pot heteroannulation of acetylenic compounds. Advanced Synthesis and Catalysis. 354(7):1347-1355. https://doi.org/10.1002/adsc.201100503

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/29556

Ficheros en el ítem

Metadatos del ítem

Título: Bifunctional metal organic framework catalysts for multistep reactions: MOF-Cu(BTC)-[Pd] Catalyst for one-pot heteroannulation of acetylenic compounds
Autor: Arnanz, Avelina Pintado-Sierra, Mercedes Corma Canós, Avelino Iglesias, Marta Sánchez Alonso, Felix
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] A bifunctional metal organic framework catalyst containing palladium and copper(II) benzene- 1,3,5-tricarboxylate - MOF-Cu(BTC)-[Pd] - has been prepared. This catalyst enables the performance of the tandem Sonogashira/click ...[+]
Palabras clave: Bifunctional metal organic frameworks (MOFs) , Copper-palladium catalysis , Coupling-cyclization , Isoindoles , Tandem recations
Derechos de uso: Cerrado
Fuente:
Advanced Synthesis and Catalysis. (issn: 1615-4150 )
DOI: 10.1002/adsc.201100503
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/adsc.201100503
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ /
info:eu-repo/grantAgreement/MICINN//MAT2011-29020-C02-02/ES/MATERIALES HIBRIDOS ORGANO-INORGANICOS COMO CATALIZADORES SELECTIVOS RECICLABLES/
Agradecimientos:
We thank the MICINN of Spain (Projects: Consolider-Ingenio 2010, CSD-0050-MULTICAT, MAT2011-29020-C02-02) for financial support.
Tipo: Artículo

References

Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b

Long, J. R., & Yaghi, O. M. (2009). The pervasive chemistry of metal–organic frameworks. Chemical Society Reviews, 38(5), 1213. doi:10.1039/b903811f

Murray, L. J., Dincă, M., & Long, J. R. (2009). Hydrogen storage in metal–organic frameworks. Chemical Society Reviews, 38(5), 1294. doi:10.1039/b802256a [+]
Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b

Long, J. R., & Yaghi, O. M. (2009). The pervasive chemistry of metal–organic frameworks. Chemical Society Reviews, 38(5), 1213. doi:10.1039/b903811f

Murray, L. J., Dincă, M., & Long, J. R. (2009). Hydrogen storage in metal–organic frameworks. Chemical Society Reviews, 38(5), 1294. doi:10.1039/b802256a

Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-714. doi:10.1038/nature01650

Yaghi, O. M. (2007). A tale of two entanglements. Nature Materials, 6(2), 92-93. doi:10.1038/nmat1824

Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f

Li, J.-R., Kuppler, R. J., & Zhou, H.-C. (2009). Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 38(5), 1477. doi:10.1039/b802426j

Gücüyener, C., van den Bergh, J., Gascon, J., & Kapteijn, F. (2010). Ethane/Ethene Separation Turned on Its Head: Selective Ethane Adsorption on the Metal−Organic Framework ZIF-7 through a Gate-Opening Mechanism. Journal of the American Chemical Society, 132(50), 17704-17706. doi:10.1021/ja1089765

Wang, Z., & Cohen, S. M. (2009). Postsynthetic modification of metal–organic frameworks. Chemical Society Reviews, 38(5), 1315. doi:10.1039/b802258p

Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie, 120(22), 4212-4216. doi:10.1002/ange.200705998

Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie International Edition, 47(22), 4144-4148. doi:10.1002/anie.200705998

Juan-Alcañiz, J., Ramos-Fernandez, E. V., Lafont, U., Gascon, J., & Kapteijn, F. (2010). Building MOF bottles around phosphotungstic acid ships: One-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts. Journal of Catalysis, 269(1), 229-241. doi:10.1016/j.jcat.2009.11.011

Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y., & Kitagawa, S. (2007). Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand:  Selective Sorption and Catalysis. Journal of the American Chemical Society, 129(9), 2607-2614. doi:10.1021/ja067374y

GASCON, J., AKTAY, U., HERNANDEZALONSO, M., VANKLINK, G., & KAPTEIJN, F. (2009). Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 261(1), 75-87. doi:10.1016/j.jcat.2008.11.010

Couck, S., Denayer, J. F. M., Baron, G. V., Rémy, T., Gascon, J., & Kapteijn, F. (2009). An Amine-Functionalized MIL-53 Metal−Organic Framework with Large Separation Power for CO2and CH4. Journal of the American Chemical Society, 131(18), 6326-6327. doi:10.1021/ja900555r

Savonnet, M., Bazer-Bachi, D., Bats, N., Perez-Pellitero, J., Jeanneau, E., Lecocq, V., … Farrusseng, D. (2010). Generic Postfunctionalization Route from Amino-Derived Metal−Organic Frameworks. Journal of the American Chemical Society, 132(13), 4518-4519. doi:10.1021/ja909613e

Ahnfeldt, T., Guillou, N., Gunzelmann, D., Margiolaki, I., Loiseau, T., Férey, G., … Stock, N. (2009). [Al4(OH)2(OCH3)4(H2N-bdc)3]⋅x H2O: A 12-Connected Porous Metal-Organic Framework with an Unprecedented Aluminum-Containing Brick. Angewandte Chemie, 121(28), 5265-5268. doi:10.1002/ange.200901409

Ahnfeldt, T., Guillou, N., Gunzelmann, D., Margiolaki, I., Loiseau, T., Férey, G., … Stock, N. (2009). [Al4(OH)2(OCH3)4(H2N-bdc)3]⋅x H2O: A 12-Connected Porous Metal-Organic Framework with an Unprecedented Aluminum-Containing Brick. Angewandte Chemie International Edition, 48(28), 5163-5166. doi:10.1002/anie.200901409

Kitagawa, S., Kitaura, R., & Noro, S. (2004). Funktionale poröse Koordinationspolymere. Angewandte Chemie, 116(18), 2388-2430. doi:10.1002/ange.200300610

Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610

Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., & Pastré, J. (2006). Metal–organic frameworks—prospective industrial applications. J. Mater. Chem., 16(7), 626-636. doi:10.1039/b511962f

Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J., & Kim, K. (2000). A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature, 404(6781), 982-986. doi:10.1038/35010088

Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084

Wang, Z., Chen, G., & Ding, K. (2009). Self-Supported Catalysts. Chemical Reviews, 109(2), 322-359. doi:10.1021/cr800406u

Bernini, M. C., Gándara, F., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., Brusau, E. V., … Monge, M. Á. (2009). Reversible Breaking and Forming of Metal-Ligand Coordination Bonds: Temperature-Triggered Single-Crystal to Single-Crystal Transformation in a Metal-Organic Framework. Chemistry - A European Journal, 15(19), 4896-4905. doi:10.1002/chem.200802385

Gándara, F., Gomez-Lor, B., Gutiérrez-Puebla, E., Iglesias, M., Monge, M. A., Proserpio, D. M., & Snejko, N. (2008). An Indium Layered MOF as Recyclable Lewis Acid Catalyst. Chemistry of Materials, 20(1), 72-76. doi:10.1021/cm071079a

LLABRESIXAMENA, F., ABAD, A., CORMA, A., & GARCIA, H. (2007). MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF. Journal of Catalysis, 250(2), 294-298. doi:10.1016/j.jcat.2007.06.004

LLABRESIXAMENA, F., CASANOVA, O., GALIASSOTAILLEUR, R., GARCIA, H., & CORMA, A. (2008). Metal organic frameworks (MOFs) as catalysts: A combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation. Journal of Catalysis, 255(2), 220-227. doi:10.1016/j.jcat.2008.02.011

Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., … Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186-10191. doi:10.1073/pnas.0602439103

Baburin, I. A., Leoni, S., & Seifert, G. (2008). Enumeration of Not-Yet-Synthesized Zeolitic Zinc Imidazolate MOF Networks: A Topological and DFT Approach. The Journal of Physical Chemistry B, 112(31), 9437-9443. doi:10.1021/jp801681w

Chui, S. S. (1999). A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science, 283(5405), 1148-1150. doi:10.1126/science.283.5405.1148

Schlichte, K., Kratzke, T., & Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1-2), 81-88. doi:10.1016/j.micromeso.2003.12.027

Young, D. A., Freedman, T. B., Lipp, E. D., & Nafie, L. A. (1986). Vibrational circular dichroism in transition-metal complexes. 2. Ion association, ring conformation, and ring currents of ethylenediamine ligands. Journal of the American Chemical Society, 108(23), 7255-7263. doi:10.1021/ja00283a021

Huisgen, R., Knorr, R., Möbius, L., & Szeimies, G. (1965). 1.3-Dipolare Cycloadditionen, XXIII. Einige Beobachtungen zur Addition organischer Azide an CC-Dreifachbindungen. Chemische Berichte, 98(12), 4014-4021. doi:10.1002/cber.19650981228

Huisgen, R. (1989). Kinetics and reaction mechanisms: selected examples from the experience of forty years. Pure and Applied Chemistry, 61(4), 613-628. doi:10.1351/pac198961040613

Bock, V. D., Hiemstra, H., & van Maarseveen, J. H. (2006). CuI-Catalyzed Alkyne-Azide «Click» Cycloadditions from a Mechanistic and Synthetic Perspective. European Journal of Organic Chemistry, 2006(1), 51-68. doi:10.1002/ejoc.200500483

Meldal, M., & Tornøe, C. W. (2008). Cu-Catalyzed Azide−Alkyne Cycloaddition. Chemical Reviews, 108(8), 2952-3015. doi:10.1021/cr0783479

Appukkuttan, P., & Van der Eycken, E. (2008). Recent Developments in Microwave-Assisted, Transition-Metal-Catalysed C–C and C–N Bond-Forming Reactions. European Journal of Organic Chemistry, 2008(7), 1133-1155. doi:10.1002/ejoc.200701056

Kappe, C. O., & Van der Eycken, E. (2010). Click chemistry under non-classical reaction conditions. Chem. Soc. Rev., 39(4), 1280-1290. doi:10.1039/b901973c

Anderson, J. A., & García, M. F. (2005). Supported Metals in Catalysis. Catalytic Science Series. doi:10.1142/p354

Kaneda, K., Ebitani, K., Mizugaki, T., & Mori, K. (2006). Design of High-Performance Heterogeneous Metal Catalysts for Green and Sustainable Chemistry. Bulletin of the Chemical Society of Japan, 79(7), 981-1016. doi:10.1246/bcsj.79.981

Lipshutz, B. H., & Taft, B. R. (2006). Heterogeneous Copper-in-Charcoal-Catalyzed Click Chemistry. Angewandte Chemie, 118(48), 8415-8418. doi:10.1002/ange.200603726

Lipshutz, B. H., & Taft, B. R. (2006). Heterogeneous Copper-in-Charcoal-Catalyzed Click Chemistry. Angewandte Chemie International Edition, 45(48), 8235-8238. doi:10.1002/anie.200603726

Lee, C.-T., Huang, S., & Lipshutz, B. (2009). Copper-in-Charcoal-Catalyzed, Tandem One-Pot Diazo Transfer-Click Reactions. Advanced Synthesis & Catalysis, 351(18), 3139-3142. doi:10.1002/adsc.200900604

Chassaing, S., Sani Souna Sido, A., Alix, A., Kumarraja, M., Pale, P., & Sommer, J. (2008). «Click Chemistry» in Zeolites: Copper(I) Zeolites as New Heterogeneous and Ligand-Free Catalysts for the Huisgen [3+2] Cycloaddition. Chemistry - A European Journal, 14(22), 6713-6721. doi:10.1002/chem.200800479

Jlalia, I., Elamari, H., Meganem, F., Herscovici, J., & Girard, C. (2008). Copper(I)-doped Wyoming’s montmorillonite for the synthesis of disubstituted 1,2,3-triazoles. Tetrahedron Letters, 49(48), 6756-6758. doi:10.1016/j.tetlet.2008.09.031

Li, P., Wang, L., & Zhang, Y. (2008). SiO2–NHC–Cu(I): an efficient and reusable catalyst for [3+2] cycloaddition of organic azides and terminal alkynes under solvent-free reaction conditions at room temperature. Tetrahedron, 64(48), 10825-10830. doi:10.1016/j.tet.2008.09.021

Chtchigrovsky, M., Primo, A., Gonzalez, P., Molvinger, K., Robitzer, M., Quignard, F., & Taran, F. (2009). Functionalized Chitosan as a Green, Recyclable, Biopolymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition. Angewandte Chemie, 121(32), 6030-6034. doi:10.1002/ange.200901309

Chtchigrovsky, M., Primo, A., Gonzalez, P., Molvinger, K., Robitzer, M., Quignard, F., & Taran, F. (2009). Functionalized Chitosan as a Green, Recyclable, Biopolymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition. Angewandte Chemie International Edition, 48(32), 5916-5920. doi:10.1002/anie.200901309

Luz, I., Llabrés i Xamena, F. X., & Corma, A. (2010). Bridging homogeneous and heterogeneous catalysis with MOFs: «Click» reactions with Cu-MOF catalysts. Journal of Catalysis, 276(1), 134-140. doi:10.1016/j.jcat.2010.09.010

Chinchilla, R., & Nájera, C. (2007). The Sonogashira Reaction:  A Booming Methodology in Synthetic Organic Chemistry†. Chemical Reviews, 107(3), 874-922. doi:10.1021/cr050992x

Corma, A., Juárez, R., Boronat, M., Sánchez, F., Iglesias, M., & García, H. (2011). Gold catalyzes the Sonogashira coupling reaction without the requirement of palladium impurities. Chem. Commun., 47(5), 1446-1448. doi:10.1039/c0cc04564k

Posset, T., Guenther, J., Pope, J., Oeser, T., & Blümel, J. (2011). Immobilized Sonogashira catalyst systems: new insights by multinuclear HRMAS NMR studies. Chemical Communications, 47(7), 2059. doi:10.1039/c0cc04194g

Gruber, M. (2004). Palladium on activated carbon: a valuable heterogeneous catalyst for one-pot multi-step synthesis. Applied Catalysis A: General, 265(2), 161-169. doi:10.1016/j.apcata.2004.01.012

Chouzier, S., Gruber, M., & Djakovitch, L. (2004). New hetero-bimetallic Pd-Cu catalysts for the one-pot indole synthesis via the Sonogashira reaction. Journal of Molecular Catalysis A: Chemical, 212(1-2), 43-52. doi:10.1016/j.molcata.2003.11.027

Gu, S., Xu, D., & Chen, W. (2011). Heterobimetallic complexes containing an N-heterocyclic carbene based multidentate ligand and catalyzed tandem click/Sonogashira reactions. Dalton Transactions, 40(7), 1576. doi:10.1039/c0dt01211d

A. Alanine S. Burner B. Buettelmann N. M. Heitz G. Jaeschke E. Pinard R. Wyler 2001

S. S. Bhagwat L. M. Gayo B. Stein Q. Chao A. Gangloff J. Mckie K. Rice PCT Int. Appl. WO 0055137, 2000

C. N. Johnson G. Stemp PCT Int. Appl . WO 0021950, 2000

H. B. Broughton J. J. Kulagowski P. D. Leeson I. M. Mawer PCT Int. Appl. WO 9421628, 1994

Kapples, K. J., & Shutske, G. M. (1997). Synthesis of 1-alkyl-2,3-dihydro-2-(4-pyridinyl)-1H-isoindoles as potential selective serotonin reuptake inhibitors. Journal of Heterocyclic Chemistry, 34(4), 1335-1338. doi:10.1002/jhet.5570340440

M. Yamada S. Hamamoto K. Hayashi K. Takaoka H Matsukura M. Yotsuji K. Onezawa K. Ojima T. Takamatsu K. Taya H. Yamamoto T. Kiyoto H. Kotsubo PCT Int. Appl. WO 9921849, 1999

Alvarez, R., Velazquez, S., San-Felix, A., Aquaro, S., Clercq, E. D., Perno, C.-F., … Camarasa, M. J. (1994). 1,2,3-Triazole-[2,5-Bis-O-(tert-butyldimethylsilyl)-.beta.-D-ribofuranosyl]-3’-spiro-5’’-(4’’-amino-1’’,2’’-oxathiole 2’’,2’’-dioxide) (TSAO) Analogs: Synthesis and Anti-HIV-1 Activity. Journal of Medicinal Chemistry, 37(24), 4185-4194. doi:10.1021/jm00050a015

Genin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., … Yagi, B. H. (2000). Substituent Effects on the Antibacterial Activity of Nitrogen−Carbon-Linked (Azolylphenyl)oxazolidinones with Expanded Activity Against the Fastidious Gram-Negative OrganismsHaemophilusinfluenzaeandMoraxellacatarrhalis. Journal of Medicinal Chemistry, 43(5), 953-970. doi:10.1021/jm990373e

KUME, M., KUBOTA, T., KIMURA, Y., NAKASHIMIZU, H., MOTOKAWA, K., & NAKANO, M. (1993). Orally active cephalosporins. II. Synthesis and structure-activity relationships of new 7.BETA.-((Z)-2-(2-aminothiazol-4-yl)-2-hydroxyiminoacetamido)-cephalosporins with 1,2,3-triazole in C-3 side chain. The Journal of Antibiotics, 46(1), 177-192. doi:10.7164/antibiotics.46.177

V. S. Georgiev B. Loev R. Mack J. Musser 1981

TATSUTA, K., IKEDA, Y., & MIURA, S. (1996). Synthesis and Glycosidase Inhibitory Activities of Nagstatin Triazole Analogs. The Journal of Antibiotics, 49(8), 836-838. doi:10.7164/antibiotics.49.836

Roma, G., Di Braccio, M., Grossi, G., Mattioli, F., & Ghia, M. (2000). 1,8-Naphthyridines IV. 9-Substituted N,N-dialkyl-5-(alkylamino or cycloalkylamino) [1,2,4]triazolo[4,3-a][1,8]naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. European Journal of Medicinal Chemistry, 35(11), 1021-1035. doi:10.1016/s0223-5234(00)01175-2

Krülle, T. M., de la Fuente, C., Pickering, L., Aplin, R. T., Tsitsanou, K. E., Zographos, S. E., … Fleet, G. W. J. (1997). Triazole carboxylic acids as anionic sugar mimics? Inhibition of glycogen phosphorylase by a d-glucotriazole carboxylate. Tetrahedron: Asymmetry, 8(22), 3807-3820. doi:10.1016/s0957-4166(97)00561-2

Couty, F., Durrat, F., & Prim, D. (2004). Expeditive synthesis of homochiral fused tri- and tetrazoles–piperazines from β-amino alcohols. Tetrahedron Letters, 45(19), 3725-3728. doi:10.1016/j.tetlet.2004.03.092

Chowdhury, C., Mandal, S. B., & Achari, B. (2005). Palladium–copper catalysed heteroannulation of acetylenic compounds: an expeditious synthesis of isoindoline fused with triazoles. Tetrahedron Letters, 46(49), 8531-8534. doi:10.1016/j.tetlet.2005.10.006

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem