Mostrar el registro sencillo del ítem
dc.contributor.author | Arnanz, Avelina | es_ES |
dc.contributor.author | Pintado-Sierra, Mercedes | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.contributor.author | Iglesias, Marta | es_ES |
dc.contributor.author | Sánchez Alonso, Felix | es_ES |
dc.date.accessioned | 2013-06-10T09:59:31Z | |
dc.date.issued | 2012-04 | |
dc.identifier.issn | 1615-4150 | |
dc.identifier.uri | http://hdl.handle.net/10251/29556 | |
dc.description.abstract | [EN] A bifunctional metal organic framework catalyst containing palladium and copper(II) benzene- 1,3,5-tricarboxylate - MOF-Cu(BTC)-[Pd] - has been prepared. This catalyst enables the performance of the tandem Sonogashira/click reaction starting from 2-iodobenzylbromide, sodium azide and alkynes to produce 8H-[1,2,3] triazolo[5,1-a]isoindoles with good yields under mild reaction conditions. | es_ES |
dc.description.sponsorship | We thank the MICINN of Spain (Projects: Consolider-Ingenio 2010, CSD-0050-MULTICAT, MAT2011-29020-C02-02) for financial support. | |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | Advanced Synthesis and Catalysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bifunctional metal organic frameworks (MOFs) | es_ES |
dc.subject | Copper-palladium catalysis | es_ES |
dc.subject | Coupling-cyclization | es_ES |
dc.subject | Isoindoles | es_ES |
dc.subject | Tandem recations | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Bifunctional metal organic framework catalysts for multistep reactions: MOF-Cu(BTC)-[Pd] Catalyst for one-pot heteroannulation of acetylenic compounds | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/adsc.201100503 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2011-29020-C02-02/ES/MATERIALES HIBRIDOS ORGANO-INORGANICOS COMO CATALIZADORES SELECTIVOS RECICLABLES/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Arnanz, A.; Pintado-Sierra, M.; Corma Canós, A.; Iglesias, M.; Sánchez Alonso, F. (2012). Bifunctional metal organic framework catalysts for multistep reactions: MOF-Cu(BTC)-[Pd] Catalyst for one-pot heteroannulation of acetylenic compounds. Advanced Synthesis and Catalysis. 354(7):1347-1355. https://doi.org/10.1002/adsc.201100503 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/adsc.201100503 | es_ES |
dc.description.upvformatpinicio | 1347 | es_ES |
dc.description.upvformatpfin | 1355 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 354 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.senia | 236505 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b | es_ES |
dc.description.references | Long, J. R., & Yaghi, O. M. (2009). The pervasive chemistry of metal–organic frameworks. Chemical Society Reviews, 38(5), 1213. doi:10.1039/b903811f | es_ES |
dc.description.references | Murray, L. J., Dincă, M., & Long, J. R. (2009). Hydrogen storage in metal–organic frameworks. Chemical Society Reviews, 38(5), 1294. doi:10.1039/b802256a | es_ES |
dc.description.references | Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-714. doi:10.1038/nature01650 | es_ES |
dc.description.references | Yaghi, O. M. (2007). A tale of two entanglements. Nature Materials, 6(2), 92-93. doi:10.1038/nmat1824 | es_ES |
dc.description.references | Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 | es_ES |
dc.description.references | Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f | es_ES |
dc.description.references | Li, J.-R., Kuppler, R. J., & Zhou, H.-C. (2009). Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 38(5), 1477. doi:10.1039/b802426j | es_ES |
dc.description.references | Gücüyener, C., van den Bergh, J., Gascon, J., & Kapteijn, F. (2010). Ethane/Ethene Separation Turned on Its Head: Selective Ethane Adsorption on the Metal−Organic Framework ZIF-7 through a Gate-Opening Mechanism. Journal of the American Chemical Society, 132(50), 17704-17706. doi:10.1021/ja1089765 | es_ES |
dc.description.references | Wang, Z., & Cohen, S. M. (2009). Postsynthetic modification of metal–organic frameworks. Chemical Society Reviews, 38(5), 1315. doi:10.1039/b802258p | es_ES |
dc.description.references | Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie, 120(22), 4212-4216. doi:10.1002/ange.200705998 | es_ES |
dc.description.references | Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie International Edition, 47(22), 4144-4148. doi:10.1002/anie.200705998 | es_ES |
dc.description.references | Juan-Alcañiz, J., Ramos-Fernandez, E. V., Lafont, U., Gascon, J., & Kapteijn, F. (2010). Building MOF bottles around phosphotungstic acid ships: One-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts. Journal of Catalysis, 269(1), 229-241. doi:10.1016/j.jcat.2009.11.011 | es_ES |
dc.description.references | Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y., & Kitagawa, S. (2007). Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis. Journal of the American Chemical Society, 129(9), 2607-2614. doi:10.1021/ja067374y | es_ES |
dc.description.references | GASCON, J., AKTAY, U., HERNANDEZALONSO, M., VANKLINK, G., & KAPTEIJN, F. (2009). Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 261(1), 75-87. doi:10.1016/j.jcat.2008.11.010 | es_ES |
dc.description.references | Couck, S., Denayer, J. F. M., Baron, G. V., Rémy, T., Gascon, J., & Kapteijn, F. (2009). An Amine-Functionalized MIL-53 Metal−Organic Framework with Large Separation Power for CO2and CH4. Journal of the American Chemical Society, 131(18), 6326-6327. doi:10.1021/ja900555r | es_ES |
dc.description.references | Savonnet, M., Bazer-Bachi, D., Bats, N., Perez-Pellitero, J., Jeanneau, E., Lecocq, V., … Farrusseng, D. (2010). Generic Postfunctionalization Route from Amino-Derived Metal−Organic Frameworks. Journal of the American Chemical Society, 132(13), 4518-4519. doi:10.1021/ja909613e | es_ES |
dc.description.references | Ahnfeldt, T., Guillou, N., Gunzelmann, D., Margiolaki, I., Loiseau, T., Férey, G., … Stock, N. (2009). [Al4(OH)2(OCH3)4(H2N-bdc)3]⋅x H2O: A 12-Connected Porous Metal-Organic Framework with an Unprecedented Aluminum-Containing Brick. Angewandte Chemie, 121(28), 5265-5268. doi:10.1002/ange.200901409 | es_ES |
dc.description.references | Ahnfeldt, T., Guillou, N., Gunzelmann, D., Margiolaki, I., Loiseau, T., Férey, G., … Stock, N. (2009). [Al4(OH)2(OCH3)4(H2N-bdc)3]⋅x H2O: A 12-Connected Porous Metal-Organic Framework with an Unprecedented Aluminum-Containing Brick. Angewandte Chemie International Edition, 48(28), 5163-5166. doi:10.1002/anie.200901409 | es_ES |
dc.description.references | Kitagawa, S., Kitaura, R., & Noro, S. (2004). Funktionale poröse Koordinationspolymere. Angewandte Chemie, 116(18), 2388-2430. doi:10.1002/ange.200300610 | es_ES |
dc.description.references | Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610 | es_ES |
dc.description.references | Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., & Pastré, J. (2006). Metal–organic frameworks—prospective industrial applications. J. Mater. Chem., 16(7), 626-636. doi:10.1039/b511962f | es_ES |
dc.description.references | Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J., & Kim, K. (2000). A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature, 404(6781), 982-986. doi:10.1038/35010088 | es_ES |
dc.description.references | Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084 | es_ES |
dc.description.references | Wang, Z., Chen, G., & Ding, K. (2009). Self-Supported Catalysts. Chemical Reviews, 109(2), 322-359. doi:10.1021/cr800406u | es_ES |
dc.description.references | Bernini, M. C., Gándara, F., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., Brusau, E. V., … Monge, M. Á. (2009). Reversible Breaking and Forming of Metal-Ligand Coordination Bonds: Temperature-Triggered Single-Crystal to Single-Crystal Transformation in a Metal-Organic Framework. Chemistry - A European Journal, 15(19), 4896-4905. doi:10.1002/chem.200802385 | es_ES |
dc.description.references | Gándara, F., Gomez-Lor, B., Gutiérrez-Puebla, E., Iglesias, M., Monge, M. A., Proserpio, D. M., & Snejko, N. (2008). An Indium Layered MOF as Recyclable Lewis Acid Catalyst. Chemistry of Materials, 20(1), 72-76. doi:10.1021/cm071079a | es_ES |
dc.description.references | LLABRESIXAMENA, F., ABAD, A., CORMA, A., & GARCIA, H. (2007). MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF. Journal of Catalysis, 250(2), 294-298. doi:10.1016/j.jcat.2007.06.004 | es_ES |
dc.description.references | LLABRESIXAMENA, F., CASANOVA, O., GALIASSOTAILLEUR, R., GARCIA, H., & CORMA, A. (2008). Metal organic frameworks (MOFs) as catalysts: A combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation. Journal of Catalysis, 255(2), 220-227. doi:10.1016/j.jcat.2008.02.011 | es_ES |
dc.description.references | Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., … Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186-10191. doi:10.1073/pnas.0602439103 | es_ES |
dc.description.references | Baburin, I. A., Leoni, S., & Seifert, G. (2008). Enumeration of Not-Yet-Synthesized Zeolitic Zinc Imidazolate MOF Networks: A Topological and DFT Approach. The Journal of Physical Chemistry B, 112(31), 9437-9443. doi:10.1021/jp801681w | es_ES |
dc.description.references | Chui, S. S. (1999). A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science, 283(5405), 1148-1150. doi:10.1126/science.283.5405.1148 | es_ES |
dc.description.references | Schlichte, K., Kratzke, T., & Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1-2), 81-88. doi:10.1016/j.micromeso.2003.12.027 | es_ES |
dc.description.references | Young, D. A., Freedman, T. B., Lipp, E. D., & Nafie, L. A. (1986). Vibrational circular dichroism in transition-metal complexes. 2. Ion association, ring conformation, and ring currents of ethylenediamine ligands. Journal of the American Chemical Society, 108(23), 7255-7263. doi:10.1021/ja00283a021 | es_ES |
dc.description.references | Huisgen, R., Knorr, R., Möbius, L., & Szeimies, G. (1965). 1.3-Dipolare Cycloadditionen, XXIII. Einige Beobachtungen zur Addition organischer Azide an CC-Dreifachbindungen. Chemische Berichte, 98(12), 4014-4021. doi:10.1002/cber.19650981228 | es_ES |
dc.description.references | Huisgen, R. (1989). Kinetics and reaction mechanisms: selected examples from the experience of forty years. Pure and Applied Chemistry, 61(4), 613-628. doi:10.1351/pac198961040613 | es_ES |
dc.description.references | Bock, V. D., Hiemstra, H., & van Maarseveen, J. H. (2006). CuI-Catalyzed Alkyne-Azide «Click» Cycloadditions from a Mechanistic and Synthetic Perspective. European Journal of Organic Chemistry, 2006(1), 51-68. doi:10.1002/ejoc.200500483 | es_ES |
dc.description.references | Meldal, M., & Tornøe, C. W. (2008). Cu-Catalyzed Azide−Alkyne Cycloaddition. Chemical Reviews, 108(8), 2952-3015. doi:10.1021/cr0783479 | es_ES |
dc.description.references | Appukkuttan, P., & Van der Eycken, E. (2008). Recent Developments in Microwave-Assisted, Transition-Metal-Catalysed C–C and C–N Bond-Forming Reactions. European Journal of Organic Chemistry, 2008(7), 1133-1155. doi:10.1002/ejoc.200701056 | es_ES |
dc.description.references | Kappe, C. O., & Van der Eycken, E. (2010). Click chemistry under non-classical reaction conditions. Chem. Soc. Rev., 39(4), 1280-1290. doi:10.1039/b901973c | es_ES |
dc.description.references | Anderson, J. A., & García, M. F. (2005). Supported Metals in Catalysis. Catalytic Science Series. doi:10.1142/p354 | es_ES |
dc.description.references | Kaneda, K., Ebitani, K., Mizugaki, T., & Mori, K. (2006). Design of High-Performance Heterogeneous Metal Catalysts for Green and Sustainable Chemistry. Bulletin of the Chemical Society of Japan, 79(7), 981-1016. doi:10.1246/bcsj.79.981 | es_ES |
dc.description.references | Lipshutz, B. H., & Taft, B. R. (2006). Heterogeneous Copper-in-Charcoal-Catalyzed Click Chemistry. Angewandte Chemie, 118(48), 8415-8418. doi:10.1002/ange.200603726 | es_ES |
dc.description.references | Lipshutz, B. H., & Taft, B. R. (2006). Heterogeneous Copper-in-Charcoal-Catalyzed Click Chemistry. Angewandte Chemie International Edition, 45(48), 8235-8238. doi:10.1002/anie.200603726 | es_ES |
dc.description.references | Lee, C.-T., Huang, S., & Lipshutz, B. (2009). Copper-in-Charcoal-Catalyzed, Tandem One-Pot Diazo Transfer-Click Reactions. Advanced Synthesis & Catalysis, 351(18), 3139-3142. doi:10.1002/adsc.200900604 | es_ES |
dc.description.references | Chassaing, S., Sani Souna Sido, A., Alix, A., Kumarraja, M., Pale, P., & Sommer, J. (2008). «Click Chemistry» in Zeolites: Copper(I) Zeolites as New Heterogeneous and Ligand-Free Catalysts for the Huisgen [3+2] Cycloaddition. Chemistry - A European Journal, 14(22), 6713-6721. doi:10.1002/chem.200800479 | es_ES |
dc.description.references | Jlalia, I., Elamari, H., Meganem, F., Herscovici, J., & Girard, C. (2008). Copper(I)-doped Wyoming’s montmorillonite for the synthesis of disubstituted 1,2,3-triazoles. Tetrahedron Letters, 49(48), 6756-6758. doi:10.1016/j.tetlet.2008.09.031 | es_ES |
dc.description.references | Li, P., Wang, L., & Zhang, Y. (2008). SiO2–NHC–Cu(I): an efficient and reusable catalyst for [3+2] cycloaddition of organic azides and terminal alkynes under solvent-free reaction conditions at room temperature. Tetrahedron, 64(48), 10825-10830. doi:10.1016/j.tet.2008.09.021 | es_ES |
dc.description.references | Chtchigrovsky, M., Primo, A., Gonzalez, P., Molvinger, K., Robitzer, M., Quignard, F., & Taran, F. (2009). Functionalized Chitosan as a Green, Recyclable, Biopolymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition. Angewandte Chemie, 121(32), 6030-6034. doi:10.1002/ange.200901309 | es_ES |
dc.description.references | Chtchigrovsky, M., Primo, A., Gonzalez, P., Molvinger, K., Robitzer, M., Quignard, F., & Taran, F. (2009). Functionalized Chitosan as a Green, Recyclable, Biopolymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition. Angewandte Chemie International Edition, 48(32), 5916-5920. doi:10.1002/anie.200901309 | es_ES |
dc.description.references | Luz, I., Llabrés i Xamena, F. X., & Corma, A. (2010). Bridging homogeneous and heterogeneous catalysis with MOFs: «Click» reactions with Cu-MOF catalysts. Journal of Catalysis, 276(1), 134-140. doi:10.1016/j.jcat.2010.09.010 | es_ES |
dc.description.references | Chinchilla, R., & Nájera, C. (2007). The Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry†. Chemical Reviews, 107(3), 874-922. doi:10.1021/cr050992x | es_ES |
dc.description.references | Corma, A., Juárez, R., Boronat, M., Sánchez, F., Iglesias, M., & García, H. (2011). Gold catalyzes the Sonogashira coupling reaction without the requirement of palladium impurities. Chem. Commun., 47(5), 1446-1448. doi:10.1039/c0cc04564k | es_ES |
dc.description.references | Posset, T., Guenther, J., Pope, J., Oeser, T., & Blümel, J. (2011). Immobilized Sonogashira catalyst systems: new insights by multinuclear HRMAS NMR studies. Chemical Communications, 47(7), 2059. doi:10.1039/c0cc04194g | es_ES |
dc.description.references | Gruber, M. (2004). Palladium on activated carbon: a valuable heterogeneous catalyst for one-pot multi-step synthesis. Applied Catalysis A: General, 265(2), 161-169. doi:10.1016/j.apcata.2004.01.012 | es_ES |
dc.description.references | Chouzier, S., Gruber, M., & Djakovitch, L. (2004). New hetero-bimetallic Pd-Cu catalysts for the one-pot indole synthesis via the Sonogashira reaction. Journal of Molecular Catalysis A: Chemical, 212(1-2), 43-52. doi:10.1016/j.molcata.2003.11.027 | es_ES |
dc.description.references | Gu, S., Xu, D., & Chen, W. (2011). Heterobimetallic complexes containing an N-heterocyclic carbene based multidentate ligand and catalyzed tandem click/Sonogashira reactions. Dalton Transactions, 40(7), 1576. doi:10.1039/c0dt01211d | es_ES |
dc.description.references | A. Alanine S. Burner B. Buettelmann N. M. Heitz G. Jaeschke E. Pinard R. Wyler 2001 | es_ES |
dc.description.references | S. S. Bhagwat L. M. Gayo B. Stein Q. Chao A. Gangloff J. Mckie K. Rice PCT Int. Appl. WO 0055137, 2000 | es_ES |
dc.description.references | C. N. Johnson G. Stemp PCT Int. Appl . WO 0021950, 2000 | es_ES |
dc.description.references | H. B. Broughton J. J. Kulagowski P. D. Leeson I. M. Mawer PCT Int. Appl. WO 9421628, 1994 | es_ES |
dc.description.references | Kapples, K. J., & Shutske, G. M. (1997). Synthesis of 1-alkyl-2,3-dihydro-2-(4-pyridinyl)-1H-isoindoles as potential selective serotonin reuptake inhibitors. Journal of Heterocyclic Chemistry, 34(4), 1335-1338. doi:10.1002/jhet.5570340440 | es_ES |
dc.description.references | M. Yamada S. Hamamoto K. Hayashi K. Takaoka H Matsukura M. Yotsuji K. Onezawa K. Ojima T. Takamatsu K. Taya H. Yamamoto T. Kiyoto H. Kotsubo PCT Int. Appl. WO 9921849, 1999 | es_ES |
dc.description.references | Alvarez, R., Velazquez, S., San-Felix, A., Aquaro, S., Clercq, E. D., Perno, C.-F., … Camarasa, M. J. (1994). 1,2,3-Triazole-[2,5-Bis-O-(tert-butyldimethylsilyl)-.beta.-D-ribofuranosyl]-3’-spiro-5’’-(4’’-amino-1’’,2’’-oxathiole 2’’,2’’-dioxide) (TSAO) Analogs: Synthesis and Anti-HIV-1 Activity. Journal of Medicinal Chemistry, 37(24), 4185-4194. doi:10.1021/jm00050a015 | es_ES |
dc.description.references | Genin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., … Yagi, B. H. (2000). Substituent Effects on the Antibacterial Activity of Nitrogen−Carbon-Linked (Azolylphenyl)oxazolidinones with Expanded Activity Against the Fastidious Gram-Negative OrganismsHaemophilusinfluenzaeandMoraxellacatarrhalis. Journal of Medicinal Chemistry, 43(5), 953-970. doi:10.1021/jm990373e | es_ES |
dc.description.references | KUME, M., KUBOTA, T., KIMURA, Y., NAKASHIMIZU, H., MOTOKAWA, K., & NAKANO, M. (1993). Orally active cephalosporins. II. Synthesis and structure-activity relationships of new 7.BETA.-((Z)-2-(2-aminothiazol-4-yl)-2-hydroxyiminoacetamido)-cephalosporins with 1,2,3-triazole in C-3 side chain. The Journal of Antibiotics, 46(1), 177-192. doi:10.7164/antibiotics.46.177 | es_ES |
dc.description.references | V. S. Georgiev B. Loev R. Mack J. Musser 1981 | es_ES |
dc.description.references | TATSUTA, K., IKEDA, Y., & MIURA, S. (1996). Synthesis and Glycosidase Inhibitory Activities of Nagstatin Triazole Analogs. The Journal of Antibiotics, 49(8), 836-838. doi:10.7164/antibiotics.49.836 | es_ES |
dc.description.references | Roma, G., Di Braccio, M., Grossi, G., Mattioli, F., & Ghia, M. (2000). 1,8-Naphthyridines IV. 9-Substituted N,N-dialkyl-5-(alkylamino or cycloalkylamino) [1,2,4]triazolo[4,3-a][1,8]naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. European Journal of Medicinal Chemistry, 35(11), 1021-1035. doi:10.1016/s0223-5234(00)01175-2 | es_ES |
dc.description.references | Krülle, T. M., de la Fuente, C., Pickering, L., Aplin, R. T., Tsitsanou, K. E., Zographos, S. E., … Fleet, G. W. J. (1997). Triazole carboxylic acids as anionic sugar mimics? Inhibition of glycogen phosphorylase by a d-glucotriazole carboxylate. Tetrahedron: Asymmetry, 8(22), 3807-3820. doi:10.1016/s0957-4166(97)00561-2 | es_ES |
dc.description.references | Couty, F., Durrat, F., & Prim, D. (2004). Expeditive synthesis of homochiral fused tri- and tetrazoles–piperazines from β-amino alcohols. Tetrahedron Letters, 45(19), 3725-3728. doi:10.1016/j.tetlet.2004.03.092 | es_ES |
dc.description.references | Chowdhury, C., Mandal, S. B., & Achari, B. (2005). Palladium–copper catalysed heteroannulation of acetylenic compounds: an expeditious synthesis of isoindoline fused with triazoles. Tetrahedron Letters, 46(49), 8531-8534. doi:10.1016/j.tetlet.2005.10.006 | es_ES |