- -

Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodríguez Cantó, Pedro Javier es_ES
dc.contributor.author Martínez Marco, Mª Luz es_ES
dc.contributor.author Rodríguez Fortuño, Francisco José es_ES
dc.contributor.author Tomás Navarro, Begoña es_ES
dc.contributor.author Ortuño Molinero, Rubén es_ES
dc.contributor.author Peransi Llopis, Sergio Manuel es_ES
dc.contributor.author Martínez Abietar, Alejandro José es_ES
dc.date.accessioned 2013-07-10T09:42:38Z
dc.date.available 2013-07-10T09:42:38Z
dc.date.issued 2011
dc.identifier.issn 1094-4087
dc.identifier.uri http://hdl.handle.net/10251/30976
dc.description This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.19.007664. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law es_ES
dc.description.abstract [EN] In this work, we demonstrate experimentally the use of an array of gold nanodisks on functionalized silicon for chemosensing purposes. The metallic nanostructures are designed to display a very strong plasmonic resonance in the infrared regime, which results in highly sensitive sensing. Unlike usual experiments which are based on the functionalization of the metal surface, we functionalized here the silicon substrate. This silicon surface was modified chemically by buildup of an organosilane self-assembled monolayer (SAM) containing isocyanate as functional group. These groups allow for an easy surface regeneration by simple heating, thanks to the thermally reversible interaction isocyanate-analyte, which allows the cyclic use of the sensor. The technique showed a high sensitivity to surface binding events in gas and allowed the surface regeneration by heating of the sensor at 150°C. A relative wavelength shift ¿¿max/¿0 = 0.027 was obtained when the saturation level was reached. © 2011 Optical Society of America. es_ES
dc.description.sponsorship Financial support by the Spanish MICINN under contracts CONSOLIDER EMET (CSD2008-00066) and TEC2008-06871-C02-02 and European Commission FP7 under the FET-Open project TAILPHOX 233833 is gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Analytes es_ES
dc.subject Chemosensing es_ES
dc.subject Functionalizations es_ES
dc.subject Functionalized es_ES
dc.subject Gas sensing es_ES
dc.subject High sensitivity es_ES
dc.subject Highly sensitive es_ES
dc.subject Metal surfaces es_ES
dc.subject Metallic nanostructure es_ES
dc.subject Nanodisks es_ES
dc.subject Near Infrared es_ES
dc.subject Organosilane self-assembled monolayers es_ES
dc.subject Plasmonic es_ES
dc.subject Reversible interactions es_ES
dc.subject Saturation levels es_ES
dc.subject Silicon substrates es_ES
dc.subject Silicon surfaces es_ES
dc.subject Surface binding es_ES
dc.subject Wavelength shift es_ES
dc.subject Functional groups es_ES
dc.subject Self assembled monolayers es_ES
dc.subject Sensors es_ES
dc.subject Heating es_ES
dc.subject Gold es_ES
dc.subject Isocyanic acid derivative es_ES
dc.subject Metal nanoparticle es_ES
dc.subject Silicon es_ES
dc.subject Article es_ES
dc.subject Chemistry es_ES
dc.subject Equipment design es_ES
dc.subject Gas es_ES
dc.subject Heat es_ES
dc.subject Methodology es_ES
dc.subject Nanotechnology es_ES
dc.subject Near infrared spectroscopy es_ES
dc.subject Optics es_ES
dc.subject Surface property es_ES
dc.subject Temperature es_ES
dc.subject Gases es_ES
dc.subject Hot Temperature es_ES
dc.subject Isocyanates es_ES
dc.subject Metal Nanoparticles es_ES
dc.subject Optics and Photonics es_ES
dc.subject Spectroscopy, Near-Infrared es_ES
dc.subject Surface Properties es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.19.007664
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/233883/EU/TAILoring photon-phonon interaction in silicon PHOXonic crystals/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2008-06871-C02-02/ES/METAMATERIALES PARA APLICACIONES EN EL REGIMEN DE TERAHERCIOS/ en_EN
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Rodríguez Cantó, PJ.; Martínez Marco, ML.; Rodríguez Fortuño, FJ.; Tomás Navarro, B.; Ortuño Molinero, R.; Peransi Llopis, SM.; Martínez Abietar, AJ. (2011). Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon. Optics Express. 19(8):7664-7672. https://doi.org/10.1364/OE.19.007664 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1364/OE.19.007664 es_ES
dc.description.upvformatpinicio 7664 es_ES
dc.description.upvformatpfin 7672 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 208944
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder European Commission
dc.description.references Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424(6950), 824-830. doi:10.1038/nature01937 es_ES
dc.description.references Maier, S. A., Brongersma, M. L., Kik, P. G., Meltzer, S., Requicha, A. A. G., & Atwater, H. A. (2001). Plasmonics-A Route to Nanoscale Optical Devices. Advanced Materials, 13(19), 1501-1505. doi:10.1002/1521-4095(200110)13:19<1501::aid-adma1501>3.0.co;2-z es_ES
dc.description.references Link, S., & El-Sayed, M. A. (2003). OPTICALPROPERTIES ANDULTRAFASTDYNAMICS OFMETALLICNANOCRYSTALS. Annual Review of Physical Chemistry, 54(1), 331-366. doi:10.1146/annurev.physchem.54.011002.103759 es_ES
dc.description.references Willets, K. A., & Van Duyne, R. P. (2007). Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 58(1), 267-297. doi:10.1146/annurev.physchem.58.032806.104607 es_ES
dc.description.references Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J., & Van Duyne, R. P. (2008). Biosensing with plasmonic nanosensors. Nature Materials, 7(6), 442-453. doi:10.1038/nmat2162 es_ES
dc.description.references Zhao, J., Zhang, X., Yonzon, C. R., Haes, A. J., & Van Duyne, R. P. (2006). Localized surface plasmon resonance biosensors. Nanomedicine, 1(2), 219-228. doi:10.2217/17435889.1.2.219 es_ES
dc.description.references SHANKARAN, D., GOBI, K., & MIURA, N. (2007). Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B: Chemical, 121(1), 158-177. doi:10.1016/j.snb.2006.09.014 es_ES
dc.description.references Miura, N., Ogata, K., Sakai, G., Uda, T., & Yamazoe, N. (1997). Detection of Morphine in ppb Range by Using SPR (Surface- Plasmon-Resonance) Immunosensor. Chemistry Letters, 26(8), 713-714. doi:10.1246/cl.1997.713 es_ES
dc.description.references Shankaran, D. R., Matsumoto, K., Toko, K., & Miura, N. (2006). Development and comparison of two immunoassays for the detection of 2,4,6-trinitrotoluene (TNT) based on surface plasmon resonance. Sensors and Actuators B: Chemical, 114(1), 71-79. doi:10.1016/j.snb.2005.04.013 es_ES
dc.description.references Cosnier, S. (1999). Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosensors and Bioelectronics, 14(5), 443-456. doi:10.1016/s0956-5663(99)00024-x es_ES
dc.description.references Lee, J. W., Sim, S. J., Cho, S. M., & Lee, J. (2005). Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody. Biosensors and Bioelectronics, 20(7), 1422-1427. doi:10.1016/j.bios.2004.04.017 es_ES
dc.description.references Mark, S. S., Sandhyarani, N., Zhu, C., Campagnolo, C., & Batt, C. A. (2004). Dendrimer-Functionalized Self-Assembled Monolayers as a Surface Plasmon Resonance Sensor Surface. Langmuir, 20(16), 6808-6817. doi:10.1021/la0495276 es_ES
dc.description.references Kato, K., Dooling, C. M., Shinbo, K., Richardson, T. H., Kaneko, F., Tregonning, R., … Hunter, C. A. (2002). Surface plasmon resonance properties and gas response in porphyrin Langmuir–Blodgett films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 198-200, 811-816. doi:10.1016/s0927-7757(01)01006-8 es_ES
dc.description.references Senaratne, W., Andruzzi, L., & Ober, C. K. (2005). Self-Assembled Monolayers and Polymer Brushes in Biotechnology:  Current Applications and Future Perspectives. Biomacromolecules, 6(5), 2427-2448. doi:10.1021/bm050180a es_ES
dc.description.references Stewart, M. E., Anderton, C. R., Thompson, L. B., Maria, J., Gray, S. K., Rogers, J. A., & Nuzzo, R. G. (2008). Nanostructured Plasmonic Sensors. Chemical Reviews, 108(2), 494-521. doi:10.1021/cr068126n es_ES
dc.description.references Yin, L., Liu, Y., Ke, Z., & Yin, J. (2009). Preparation of a blocked isocyanate compound and its grafting onto styrene-b-(ethylene-co-1-butene)-b-styrene triblock copolymer. European Polymer Journal, 45(1), 191-198. doi:10.1016/j.eurpolymj.2008.10.016 es_ES
dc.description.references Suyama, K., Iriyama, H., Shirai, M., & Tsunooka, M. (2001). Curing Systems Using Photolysis of Carbomoyloxyimino Groups and Themally Regenerated Isocyanate Groups. Journal of Photopolymer Science and Technology, 14(2), 155-158. doi:10.2494/photopolymer.14.155 es_ES
dc.description.references Patskovsky, S., Kabashin, A. V., Meunier, M., & Luong, J. H. T. (2004). Near-infrared surface plasmon resonance sensing on a silicon platform. Sensors and Actuators B: Chemical, 97(2-3), 409-414. doi:10.1016/j.snb.2003.09.023 es_ES
dc.description.references Shelton, D. J., Peters, D. W., Sinclair, M. B., Brener, I., Warne, L. K., Basilio, L. I., … Boreman, G. D. (2010). Effect of thin silicon dioxide layers on resonant frequency in infrared metamaterials. Optics Express, 18(2), 1085. doi:10.1364/oe.18.001085 es_ES
dc.description.references Bhalla, V., Carrara, S., Stagni, C., & Samorì, B. (2010). Chip cleaning and regeneration for electrochemical sensor arrays. Thin Solid Films, 518(12), 3360-3366. doi:10.1016/j.tsf.2009.10.022 es_ES
dc.description.references Malinsky, M. D., Kelly, K. L., Schatz, G. C., & Van Duyne, R. P. (2001). Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers. Journal of the American Chemical Society, 123(7), 1471-1482. doi:10.1021/ja003312a es_ES
dc.description.references Spencer, M. J. S., & Nyberg, G. L. (2004). Adsorption of silane and methylsilane on gold surfaces. Surface Science, 573(2), 151-168. doi:10.1016/j.susc.2004.08.043 es_ES
dc.description.references Gradess, R., Abargues, R., Habbou, A., Canet-Ferrer, J., Pedrueza, E., Russell, A., … Martínez-Pastor, J. P. (2009). Localized surface plasmon resonance sensor based on Ag-PVA nanocomposite thin films. Journal of Materials Chemistry, 19(48), 9233. doi:10.1039/b910020b es_ES
dc.description.references Brolo, A. G., Gordon, R., Leathem, B., & Kavanagh, K. L. (2004). Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films. Langmuir, 20(12), 4813-4815. doi:10.1021/la0493621 es_ES
dc.description.references MAURIZ, E., CALLE, A., MONTOYA, A., & LECHUGA, L. (2006). Determination of environmental organic pollutants with a portable optical immunosensor. Talanta, 69(2), 359-364. doi:10.1016/j.talanta.2005.09.049 es_ES
dc.description.references Yu, Q., Chen, S., Taylor, A. D., Homola, J., Hock, B., & Jiang, S. (2005). Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor. Sensors and Actuators B: Chemical, 107(1), 193-201. doi:10.1016/j.snb.2004.10.064 es_ES
dc.description.references Cui, X. (2003). Real-time immunoassay of ferritin using surface plasmon resonance biosensor. Talanta, 60(1), 53-61. doi:10.1016/s0039-9140(03)00043-2 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem