- -

Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon

Mostrar el registro completo del ítem

Rodríguez Cantó, PJ.; Martínez Marco, ML.; Rodríguez Fortuño, FJ.; Tomás Navarro, B.; Ortuño Molinero, R.; Peransi Llopis, SM.; Martínez Abietar, AJ. (2011). Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon. Optics Express. 19(8):7664-7672. https://doi.org/10.1364/OE.19.007664

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/30976

Ficheros en el ítem

Metadatos del ítem

Título: Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon
Autor: Rodríguez Cantó, Pedro Javier Martínez Marco, Mª Luz Rodríguez Fortuño, Francisco José Tomás Navarro, Begoña Ortuño Molinero, Rubén Peransi Llopis, Sergio Manuel Martínez Abietar, Alejandro José
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] In this work, we demonstrate experimentally the use of an array of gold nanodisks on functionalized silicon for chemosensing purposes. The metallic nanostructures are designed to display a very strong plasmonic resonance ...[+]
Palabras clave: Analytes , Chemosensing , Functionalizations , Functionalized , Gas sensing , High sensitivity , Highly sensitive , Metal surfaces , Metallic nanostructure , Nanodisks , Near Infrared , Organosilane self-assembled monolayers , Plasmonic , Reversible interactions , Saturation levels , Silicon substrates , Silicon surfaces , Surface binding , Wavelength shift , Functional groups , Self assembled monolayers , Sensors , Heating , Gold , Isocyanic acid derivative , Metal nanoparticle , Silicon , Article , Chemistry , Equipment design , Gas , Heat , Methodology , Nanotechnology , Near infrared spectroscopy , Optics , Surface property , Temperature , Gases , Hot Temperature , Isocyanates , Metal Nanoparticles , Optics and Photonics , Spectroscopy, Near-Infrared , Surface Properties
Derechos de uso: Reserva de todos los derechos
Fuente:
Optics Express. (issn: 1094-4087 )
DOI: 10.1364/OE.19.007664
Editorial:
Optical Society of America
Versión del editor: https://doi.org/10.1364/OE.19.007664
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/
info:eu-repo/grantAgreement/EC/FP7/233883/EU/TAILoring photon-phonon interaction in silicon PHOXonic crystals/
info:eu-repo/grantAgreement/MICINN//TEC2008-06871-C02-02/ES/METAMATERIALES PARA APLICACIONES EN EL REGIMEN DE TERAHERCIOS/
Descripción: This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.19.007664. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law
Agradecimientos:
Financial support by the Spanish MICINN under contracts CONSOLIDER EMET (CSD2008-00066) and TEC2008-06871-C02-02 and European Commission FP7 under the FET-Open project TAILPHOX 233833 is gratefully acknowledged.
Tipo: Artículo

References

Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424(6950), 824-830. doi:10.1038/nature01937

Maier, S. A., Brongersma, M. L., Kik, P. G., Meltzer, S., Requicha, A. A. G., & Atwater, H. A. (2001). Plasmonics-A Route to Nanoscale Optical Devices. Advanced Materials, 13(19), 1501-1505. doi:10.1002/1521-4095(200110)13:19<1501::aid-adma1501>3.0.co;2-z

Link, S., & El-Sayed, M. A. (2003). OPTICALPROPERTIES ANDULTRAFASTDYNAMICS OFMETALLICNANOCRYSTALS. Annual Review of Physical Chemistry, 54(1), 331-366. doi:10.1146/annurev.physchem.54.011002.103759 [+]
Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424(6950), 824-830. doi:10.1038/nature01937

Maier, S. A., Brongersma, M. L., Kik, P. G., Meltzer, S., Requicha, A. A. G., & Atwater, H. A. (2001). Plasmonics-A Route to Nanoscale Optical Devices. Advanced Materials, 13(19), 1501-1505. doi:10.1002/1521-4095(200110)13:19<1501::aid-adma1501>3.0.co;2-z

Link, S., & El-Sayed, M. A. (2003). OPTICALPROPERTIES ANDULTRAFASTDYNAMICS OFMETALLICNANOCRYSTALS. Annual Review of Physical Chemistry, 54(1), 331-366. doi:10.1146/annurev.physchem.54.011002.103759

Willets, K. A., & Van Duyne, R. P. (2007). Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 58(1), 267-297. doi:10.1146/annurev.physchem.58.032806.104607

Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J., & Van Duyne, R. P. (2008). Biosensing with plasmonic nanosensors. Nature Materials, 7(6), 442-453. doi:10.1038/nmat2162

Zhao, J., Zhang, X., Yonzon, C. R., Haes, A. J., & Van Duyne, R. P. (2006). Localized surface plasmon resonance biosensors. Nanomedicine, 1(2), 219-228. doi:10.2217/17435889.1.2.219

SHANKARAN, D., GOBI, K., & MIURA, N. (2007). Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B: Chemical, 121(1), 158-177. doi:10.1016/j.snb.2006.09.014

Miura, N., Ogata, K., Sakai, G., Uda, T., & Yamazoe, N. (1997). Detection of Morphine in ppb Range by Using SPR (Surface- Plasmon-Resonance) Immunosensor. Chemistry Letters, 26(8), 713-714. doi:10.1246/cl.1997.713

Shankaran, D. R., Matsumoto, K., Toko, K., & Miura, N. (2006). Development and comparison of two immunoassays for the detection of 2,4,6-trinitrotoluene (TNT) based on surface plasmon resonance. Sensors and Actuators B: Chemical, 114(1), 71-79. doi:10.1016/j.snb.2005.04.013

Cosnier, S. (1999). Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosensors and Bioelectronics, 14(5), 443-456. doi:10.1016/s0956-5663(99)00024-x

Lee, J. W., Sim, S. J., Cho, S. M., & Lee, J. (2005). Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody. Biosensors and Bioelectronics, 20(7), 1422-1427. doi:10.1016/j.bios.2004.04.017

Mark, S. S., Sandhyarani, N., Zhu, C., Campagnolo, C., & Batt, C. A. (2004). Dendrimer-Functionalized Self-Assembled Monolayers as a Surface Plasmon Resonance Sensor Surface. Langmuir, 20(16), 6808-6817. doi:10.1021/la0495276

Kato, K., Dooling, C. M., Shinbo, K., Richardson, T. H., Kaneko, F., Tregonning, R., … Hunter, C. A. (2002). Surface plasmon resonance properties and gas response in porphyrin Langmuir–Blodgett films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 198-200, 811-816. doi:10.1016/s0927-7757(01)01006-8

Senaratne, W., Andruzzi, L., & Ober, C. K. (2005). Self-Assembled Monolayers and Polymer Brushes in Biotechnology:  Current Applications and Future Perspectives. Biomacromolecules, 6(5), 2427-2448. doi:10.1021/bm050180a

Stewart, M. E., Anderton, C. R., Thompson, L. B., Maria, J., Gray, S. K., Rogers, J. A., & Nuzzo, R. G. (2008). Nanostructured Plasmonic Sensors. Chemical Reviews, 108(2), 494-521. doi:10.1021/cr068126n

Yin, L., Liu, Y., Ke, Z., & Yin, J. (2009). Preparation of a blocked isocyanate compound and its grafting onto styrene-b-(ethylene-co-1-butene)-b-styrene triblock copolymer. European Polymer Journal, 45(1), 191-198. doi:10.1016/j.eurpolymj.2008.10.016

Suyama, K., Iriyama, H., Shirai, M., & Tsunooka, M. (2001). Curing Systems Using Photolysis of Carbomoyloxyimino Groups and Themally Regenerated Isocyanate Groups. Journal of Photopolymer Science and Technology, 14(2), 155-158. doi:10.2494/photopolymer.14.155

Patskovsky, S., Kabashin, A. V., Meunier, M., & Luong, J. H. T. (2004). Near-infrared surface plasmon resonance sensing on a silicon platform. Sensors and Actuators B: Chemical, 97(2-3), 409-414. doi:10.1016/j.snb.2003.09.023

Shelton, D. J., Peters, D. W., Sinclair, M. B., Brener, I., Warne, L. K., Basilio, L. I., … Boreman, G. D. (2010). Effect of thin silicon dioxide layers on resonant frequency in infrared metamaterials. Optics Express, 18(2), 1085. doi:10.1364/oe.18.001085

Bhalla, V., Carrara, S., Stagni, C., & Samorì, B. (2010). Chip cleaning and regeneration for electrochemical sensor arrays. Thin Solid Films, 518(12), 3360-3366. doi:10.1016/j.tsf.2009.10.022

Malinsky, M. D., Kelly, K. L., Schatz, G. C., & Van Duyne, R. P. (2001). Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers. Journal of the American Chemical Society, 123(7), 1471-1482. doi:10.1021/ja003312a

Spencer, M. J. S., & Nyberg, G. L. (2004). Adsorption of silane and methylsilane on gold surfaces. Surface Science, 573(2), 151-168. doi:10.1016/j.susc.2004.08.043

Gradess, R., Abargues, R., Habbou, A., Canet-Ferrer, J., Pedrueza, E., Russell, A., … Martínez-Pastor, J. P. (2009). Localized surface plasmon resonance sensor based on Ag-PVA nanocomposite thin films. Journal of Materials Chemistry, 19(48), 9233. doi:10.1039/b910020b

Brolo, A. G., Gordon, R., Leathem, B., & Kavanagh, K. L. (2004). Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films. Langmuir, 20(12), 4813-4815. doi:10.1021/la0493621

MAURIZ, E., CALLE, A., MONTOYA, A., & LECHUGA, L. (2006). Determination of environmental organic pollutants with a portable optical immunosensor. Talanta, 69(2), 359-364. doi:10.1016/j.talanta.2005.09.049

Yu, Q., Chen, S., Taylor, A. D., Homola, J., Hock, B., & Jiang, S. (2005). Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor. Sensors and Actuators B: Chemical, 107(1), 193-201. doi:10.1016/j.snb.2004.10.064

Cui, X. (2003). Real-time immunoassay of ferritin using surface plasmon resonance biosensor. Talanta, 60(1), 53-61. doi:10.1016/s0039-9140(03)00043-2

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem