FUJISHIMA, A., & HONDA, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), 37-38. doi:10.1038/238037a0
Macak, J. M., Zlamal, M., Krysa, J., & Schmuki, P. (2007). Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts. Small, 3(2), 300-304. doi:10.1002/smll.200600426
OH, S., FINONES, R., DARAIO, C., CHEN, L., & JIN, S. (2005). Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials, 26(24), 4938-4943. doi:10.1016/j.biomaterials.2005.01.048
[+]
FUJISHIMA, A., & HONDA, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), 37-38. doi:10.1038/238037a0
Macak, J. M., Zlamal, M., Krysa, J., & Schmuki, P. (2007). Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts. Small, 3(2), 300-304. doi:10.1002/smll.200600426
OH, S., FINONES, R., DARAIO, C., CHEN, L., & JIN, S. (2005). Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials, 26(24), 4938-4943. doi:10.1016/j.biomaterials.2005.01.048
Park, J., Bauer, S., von der Mark, K., & Schmuki, P. (2007). Nanosize and Vitality: TiO2Nanotube Diameter Directs Cell Fate. Nano Letters, 7(6), 1686-1691. doi:10.1021/nl070678d
O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737-740. doi:10.1038/353737a0
Macák, J. M., Tsuchiya, H., Ghicov, A., & Schmuki, P. (2005). Dye-sensitized anodic TiO2 nanotubes. Electrochemistry Communications, 7(11), 1133-1137. doi:10.1016/j.elecom.2005.08.013
Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). Formation of Titanium Oxide Nanotube. Langmuir, 14(12), 3160-3163. doi:10.1021/la9713816
Jung, J. H., Kobayashi, H., van Bommel, K. J. C., Shinkai, S., & Shimizu, T. (2002). Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2Structures Using an Organogel Template. Chemistry of Materials, 14(4), 1445-1447. doi:10.1021/cm011625e
Imai, H., Takei, Y., Shimizu, K., Matsuda, M., & Hirashima, H. (1999). Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. Journal of Materials Chemistry, 9(12), 2971-2972. doi:10.1039/a906005g
Bavykin, D. V., Friedrich, J. M., & Walsh, F. C. (2006). Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications. Advanced Materials, 18(21), 2807-2824. doi:10.1002/adma.200502696
Bavykin, D. V., Parmon, V. N., Lapkin, A. A., & Walsh, F. C. (2004). The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry, 14(22), 3370. doi:10.1039/b406378c
Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., David, D., Perrin, M. Y., & Aucouturier, M. (1999). Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surface and Interface Analysis, 27(7), 629-637. doi:10.1002/(sici)1096-9918(199907)27:7<629::aid-sia551>3.0.co;2-0
Macák, J. M., Tsuchiya, H., & Schmuki, P. (2005). High-Aspect-Ratio TiO2Nanotubes by Anodization of Titanium. Angewandte Chemie International Edition, 44(14), 2100-2102. doi:10.1002/anie.200462459
Macak, J. M., Sirotna, K., & Schmuki, P. (2005). Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochimica Acta, 50(18), 3679-3684. doi:10.1016/j.electacta.2005.01.014
Vasilev, K., Poh, Z., Kant, K., Chan, J., Michelmore, A., & Losic, D. (2010). Tailoring the surface functionalities of titania nanotube arrays. Biomaterials, 31(3), 532-540. doi:10.1016/j.biomaterials.2009.09.074
Macak, J. M., Tsuchiya, H., Taveira, L., Aldabergerova, S., & Schmuki, P. (2005). Smooth Anodic TiO2 Nanotubes. Angewandte Chemie International Edition, 44(45), 7463-7465. doi:10.1002/anie.200502781
Albu, S. P., Ghicov, A., Macak, J. M., & Schmuki, P. (2007). 250 µm long anodic TiO2 nanotubes with hexagonal self-ordering. physica status solidi (RRL) – Rapid Research Letters, 1(2), R65-R67. doi:10.1002/pssr.200600069
Albu, S. P., Roy, P., Virtanen, S., & Schmuki, P. (2010). Self-organized TiO2 Nanotube Arrays: Critical Effects on Morphology and Growth. Israel Journal of Chemistry, 50(4), 453-467. doi:10.1002/ijch.201000059
Roy, P., Berger, S., & Schmuki, P. (2011). TiO2 Nanotubes: Synthesis and Applications. Angewandte Chemie International Edition, 50(13), 2904-2939. doi:10.1002/anie.201001374
Hebert, K. R., Albu, S. P., Paramasivam, I., & Schmuki, P. (2011). Morphological instability leading to formation of porous anodic oxide films. Nature Materials, 11(2), 162-166. doi:10.1038/nmat3185
Yasuda, K., & Schmuki, P. (2007). Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Electrochimica Acta, 52(12), 4053-4061. doi:10.1016/j.electacta.2006.11.023
Macak, J. M., Hildebrand, H., Marten-Jahns, U., & Schmuki, P. (2008). Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. Journal of Electroanalytical Chemistry, 621(2), 254-266. doi:10.1016/j.jelechem.2008.01.005
Macak, J. M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., & Schmuki, P. (2007). TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 11(1-2), 3-18. doi:10.1016/j.cossms.2007.08.004
Kim, D., Schmidt-Stein, F., Hahn, R., & Schmuki, P. (2008). Gravity assisted growth of self-organized anodic oxide nanotubes on titanium. Electrochemistry Communications, 10(7), 1082-1086. doi:10.1016/j.elecom.2008.05.016
Mohapatra, S. K., Misra, M., Mahajan, V. K., & Raja, K. S. (2008). Synthesis of Y-branched TiO2 nanotubes. Materials Letters, 62(12-13), 1772-1774. doi:10.1016/j.matlet.2007.09.083
Beranek, R., Hildebrand, H., & Schmuki, P. (2003). Self-Organized Porous Titanium Oxide Prepared in H[sub 2]SO[sub 4]/HF Electrolytes. Electrochemical and Solid-State Letters, 6(3), B12. doi:10.1149/1.1545192
Kim, D., Ghicov, A., & Schmuki, P. (2008). TiO2 Nanotube arrays: Elimination of disordered top layers («nanograss») for improved photoconversion efficiency in dye-sensitized solar cells. Electrochemistry Communications, 10(12), 1835-1838. doi:10.1016/j.elecom.2008.09.029
Song, Y.-Y., Lynch, R., Kim, D., Roy, P., & Schmuki, P. (2009). TiO[sub 2] Nanotubes: Efficient Suppression of Top Etching during Anodic Growth. Electrochemical and Solid-State Letters, 12(7), C17. doi:10.1149/1.3126500
Albu, S. P., & Schmuki, P. (2010). Highly defined and ordered top-openings in TiO2 nanotube arrays. physica status solidi (RRL) - Rapid Research Letters, 4(7), 151-153. doi:10.1002/pssr.201004159
Ghicov, A., Albu, S. P., Hahn, R., Kim, D., Stergiopoulos, T., Kunze, J., … Schmuki, P. (2009). TiO2Nanotubes in Dye-Sensitized Solar Cells: Critical Factors for the Conversion Efficiency. Chemistry - An Asian Journal, 4(4), 520-525. doi:10.1002/asia.200800441
[-]