- -

Influence of hydrodynamic conditions on growth and geometry of anodic TiO2 nanotubes and their use towards optimized DSSCs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of hydrodynamic conditions on growth and geometry of anodic TiO2 nanotubes and their use towards optimized DSSCs

Mostrar el registro completo del ítem

Sánchez Tovar, R.; Paramasivam, I.; Lee, K.; Schmuki, P. (2012). Influence of hydrodynamic conditions on growth and geometry of anodic TiO2 nanotubes and their use towards optimized DSSCs. Journal of Materials Chemistry. 22(25):12792-12795. doi:10.1039/C2JM31246H

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/31739

Ficheros en el ítem

Metadatos del ítem

Título: Influence of hydrodynamic conditions on growth and geometry of anodic TiO2 nanotubes and their use towards optimized DSSCs
Autor: Sánchez Tovar, Rita Paramasivam, I. Lee, K. Schmuki, P.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] In the present work we grow anodic TiO2 nanotube layers under defined hydrodynamic conditions using a rotating Ti anode. We show that hydrodynamic control can be beneficially used to achieve two main effects. First, ...[+]
Palabras clave: Sensitized Solar-Cells , Oxide Nanotubes , Titanium , Electrolytes , Efficiency , Films , Arrays
Derechos de uso: Cerrado
Fuente:
Journal of Materials Chemistry. (issn: 0959-9428 )
DOI: 10.1039/C2JM31246H
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/C2JM31246H
Agradecimientos:
The authors would like to express their gratitude to the Spanish Ministry of Science and Innovation FPU grant given to Rita Sanchez Tovar, and DFG, and Engineering of Advanced Materials (EAM), Cluster of Excellence at the ...[+]
Tipo: Artículo

References

FUJISHIMA, A., & HONDA, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), 37-38. doi:10.1038/238037a0

Macak, J. M., Zlamal, M., Krysa, J., & Schmuki, P. (2007). Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts. Small, 3(2), 300-304. doi:10.1002/smll.200600426

OH, S., FINONES, R., DARAIO, C., CHEN, L., & JIN, S. (2005). Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials, 26(24), 4938-4943. doi:10.1016/j.biomaterials.2005.01.048 [+]
FUJISHIMA, A., & HONDA, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), 37-38. doi:10.1038/238037a0

Macak, J. M., Zlamal, M., Krysa, J., & Schmuki, P. (2007). Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts. Small, 3(2), 300-304. doi:10.1002/smll.200600426

OH, S., FINONES, R., DARAIO, C., CHEN, L., & JIN, S. (2005). Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials, 26(24), 4938-4943. doi:10.1016/j.biomaterials.2005.01.048

Park, J., Bauer, S., von der Mark, K., & Schmuki, P. (2007). Nanosize and Vitality:  TiO2Nanotube Diameter Directs Cell Fate. Nano Letters, 7(6), 1686-1691. doi:10.1021/nl070678d

O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737-740. doi:10.1038/353737a0

Macák, J. M., Tsuchiya, H., Ghicov, A., & Schmuki, P. (2005). Dye-sensitized anodic TiO2 nanotubes. Electrochemistry Communications, 7(11), 1133-1137. doi:10.1016/j.elecom.2005.08.013

Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). Formation of Titanium Oxide Nanotube. Langmuir, 14(12), 3160-3163. doi:10.1021/la9713816

Jung, J. H., Kobayashi, H., van Bommel, K. J. C., Shinkai, S., & Shimizu, T. (2002). Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2Structures Using an Organogel Template. Chemistry of Materials, 14(4), 1445-1447. doi:10.1021/cm011625e

Imai, H., Takei, Y., Shimizu, K., Matsuda, M., & Hirashima, H. (1999). Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. Journal of Materials Chemistry, 9(12), 2971-2972. doi:10.1039/a906005g

Bavykin, D. V., Friedrich, J. M., & Walsh, F. C. (2006). Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications. Advanced Materials, 18(21), 2807-2824. doi:10.1002/adma.200502696

Bavykin, D. V., Parmon, V. N., Lapkin, A. A., & Walsh, F. C. (2004). The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry, 14(22), 3370. doi:10.1039/b406378c

Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., David, D., Perrin, M. Y., & Aucouturier, M. (1999). Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surface and Interface Analysis, 27(7), 629-637. doi:10.1002/(sici)1096-9918(199907)27:7<629::aid-sia551>3.0.co;2-0

Macák, J. M., Tsuchiya, H., & Schmuki, P. (2005). High-Aspect-Ratio TiO2Nanotubes by Anodization of Titanium. Angewandte Chemie International Edition, 44(14), 2100-2102. doi:10.1002/anie.200462459

Macak, J. M., Sirotna, K., & Schmuki, P. (2005). Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochimica Acta, 50(18), 3679-3684. doi:10.1016/j.electacta.2005.01.014

Vasilev, K., Poh, Z., Kant, K., Chan, J., Michelmore, A., & Losic, D. (2010). Tailoring the surface functionalities of titania nanotube arrays. Biomaterials, 31(3), 532-540. doi:10.1016/j.biomaterials.2009.09.074

Macak, J. M., Tsuchiya, H., Taveira, L., Aldabergerova, S., & Schmuki, P. (2005). Smooth Anodic TiO2 Nanotubes. Angewandte Chemie International Edition, 44(45), 7463-7465. doi:10.1002/anie.200502781

Albu, S. P., Ghicov, A., Macak, J. M., & Schmuki, P. (2007). 250 µm long anodic TiO2 nanotubes with hexagonal self-ordering. physica status solidi (RRL) – Rapid Research Letters, 1(2), R65-R67. doi:10.1002/pssr.200600069

Albu, S. P., Roy, P., Virtanen, S., & Schmuki, P. (2010). Self-organized TiO2 Nanotube Arrays: Critical Effects on Morphology and Growth. Israel Journal of Chemistry, 50(4), 453-467. doi:10.1002/ijch.201000059

Roy, P., Berger, S., & Schmuki, P. (2011). TiO2 Nanotubes: Synthesis and Applications. Angewandte Chemie International Edition, 50(13), 2904-2939. doi:10.1002/anie.201001374

Hebert, K. R., Albu, S. P., Paramasivam, I., & Schmuki, P. (2011). Morphological instability leading to formation of porous anodic oxide films. Nature Materials, 11(2), 162-166. doi:10.1038/nmat3185

Yasuda, K., & Schmuki, P. (2007). Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Electrochimica Acta, 52(12), 4053-4061. doi:10.1016/j.electacta.2006.11.023

Macak, J. M., Hildebrand, H., Marten-Jahns, U., & Schmuki, P. (2008). Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. Journal of Electroanalytical Chemistry, 621(2), 254-266. doi:10.1016/j.jelechem.2008.01.005

Macak, J. M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., & Schmuki, P. (2007). TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 11(1-2), 3-18. doi:10.1016/j.cossms.2007.08.004

Kim, D., Schmidt-Stein, F., Hahn, R., & Schmuki, P. (2008). Gravity assisted growth of self-organized anodic oxide nanotubes on titanium. Electrochemistry Communications, 10(7), 1082-1086. doi:10.1016/j.elecom.2008.05.016

Mohapatra, S. K., Misra, M., Mahajan, V. K., & Raja, K. S. (2008). Synthesis of Y-branched TiO2 nanotubes. Materials Letters, 62(12-13), 1772-1774. doi:10.1016/j.matlet.2007.09.083

Beranek, R., Hildebrand, H., & Schmuki, P. (2003). Self-Organized Porous Titanium Oxide Prepared in H[sub 2]SO[sub 4]/HF Electrolytes. Electrochemical and Solid-State Letters, 6(3), B12. doi:10.1149/1.1545192

Kim, D., Ghicov, A., & Schmuki, P. (2008). TiO2 Nanotube arrays: Elimination of disordered top layers («nanograss») for improved photoconversion efficiency in dye-sensitized solar cells. Electrochemistry Communications, 10(12), 1835-1838. doi:10.1016/j.elecom.2008.09.029

Song, Y.-Y., Lynch, R., Kim, D., Roy, P., & Schmuki, P. (2009). TiO[sub 2] Nanotubes: Efficient Suppression of Top Etching during Anodic Growth. Electrochemical and Solid-State Letters, 12(7), C17. doi:10.1149/1.3126500

Albu, S. P., & Schmuki, P. (2010). Highly defined and ordered top-openings in TiO2 nanotube arrays. physica status solidi (RRL) - Rapid Research Letters, 4(7), 151-153. doi:10.1002/pssr.201004159

Ghicov, A., Albu, S. P., Hahn, R., Kim, D., Stergiopoulos, T., Kunze, J., … Schmuki, P. (2009). TiO2Nanotubes in Dye-Sensitized Solar Cells: Critical Factors for the Conversion Efficiency. Chemistry - An Asian Journal, 4(4), 520-525. doi:10.1002/asia.200800441

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem