- -

Synthesis and Catalytic Properties of Hybrid Mesoporous Materials Assembled from Polyhedral and Bridged Silsesquioxane Monomers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis and Catalytic Properties of Hybrid Mesoporous Materials Assembled from Polyhedral and Bridged Silsesquioxane Monomers

Mostrar el registro completo del ítem

Díaz Morales, UM.; Garcia Fernandez, MT.; Velty, AIL.; Corma Canós, A. (2012). Synthesis and Catalytic Properties of Hybrid Mesoporous Materials Assembled from Polyhedral and Bridged Silsesquioxane Monomers. Chemistry - A European Journal. 18(28):8659-8672. doi:10.1002/chem.201200170

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/33615

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis and Catalytic Properties of Hybrid Mesoporous Materials Assembled from Polyhedral and Bridged Silsesquioxane Monomers
Autor: Díaz Morales, Urbano Manuel García Fernández, María Teresa Velty, Alexandra Isabelle Lucienne Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
A family of hybrid mesoporous materials with high temperature stability was obtained by the suitable covalent combination of two types of siloxane precursors. Specifically, cubic T8 polyhedral oligomeric (POSS) and aryl ...[+]
Palabras clave: Amination , Condensation reactions , Mesoporous materials , Silsesquioxanes , Organic - inorganic hybrid composites
Derechos de uso: Cerrado
Fuente:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.201200170
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/chem.201200170
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/
info:eu-repo/grantAgreement/MINECO//MAT2011-29020-C02-01/ES/CATALIZADORES HIBRIDOS MULTIFUNCIONALES BASADOS EN UNIDADES ESTRUCTURALES ORGANICAS-INORGANICAS UTILIZADOS EN REACCIONES CASCADA/
Agradecimientos:
The authors thank the Spanish MICINN (Consolider Ingenio 2010-MUL-TICAT (CSD2009-00050) and MAT2011-29020-C02-01) for their financial support. T. G. thanks the CSIC for the award of a JAE pre-doctoral fellowship.
Tipo: Artículo

References

Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36), 3559. doi:10.1039/b509097k

Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b

Corma, A., & Garcia, H. (2004). Supramolecular Host-Guest Systems in Zeolites Prepared by Ship-in-a-Bottle Synthesis. European Journal of Inorganic Chemistry, 2004(6), 1143-1164. doi:10.1002/ejic.200300831 [+]
Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36), 3559. doi:10.1039/b509097k

Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b

Corma, A., & Garcia, H. (2004). Supramolecular Host-Guest Systems in Zeolites Prepared by Ship-in-a-Bottle Synthesis. European Journal of Inorganic Chemistry, 2004(6), 1143-1164. doi:10.1002/ejic.200300831

Corma, A., Iglesias, M., del Pino, C., & Sánchez, F. (1991). New rhodium complexes anchored on modified USY zeolites. A remarkable effect of the support on the enantioselectivity of catalytic hydrogenation of prochiral alkenes. J. Chem. Soc., Chem. Commun., (18), 1253-1255. doi:10.1039/c39910001253

Ruiz-Hitzky, E., & Rojo, J. M. (1980). Intracrystalline grafting on layer silicic acids. Nature, 287(5777), 28-30. doi:10.1038/287028a0

Alberti, G., Giontella, E., & Murcia-Mascarós, S. (1997). Mechanism of the Formation of Organic Derivatives of γ-Zirconium Phosphate by Topotactic Reactions with Phosphonic Acids in Water and Water−Acetone Media. Inorganic Chemistry, 36(13), 2844-2849. doi:10.1021/ic970048m

Srivastava, V., Gaubert, K., Pucheault, M., & Vaultier, M. (2009). Organic-Inorganic Hybrid Materials for Enantioselective Organocatalysis. ChemCatChem, 1(1), 94-98. doi:10.1002/cctc.200900035

Yamamoto, K. (2003). Organic-Inorganic Hybrid Zeolites Containing Organic Frameworks. Science, 300(5618), 470-472. doi:10.1126/science.1081019

Boronat, M., Climent, M. J., Corma, A., Iborra, S., Montón, R., & Sabater, M. J. (2010). Bifunctional Acid-Base Ionic Liquid Organocatalysts with a Controlled Distance Between Acid and Base Sites. Chemistry - A European Journal, 16(4), 1221-1231. doi:10.1002/chem.200901519

Inagaki, S., Guan, S., Fukushima, Y., Ohsuna, T., & Terasaki, O. (1999). Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks. Journal of the American Chemical Society, 121(41), 9611-9614. doi:10.1021/ja9916658

Asefa, T., MacLachlan, M. J., Coombs, N., & Ozin, G. A. (1999). Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature, 402(6764), 867-871. doi:10.1038/47229

Melde, B. J., Holland, B. T., Blanford, C. F., & Stein, A. (1999). Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks. Chemistry of Materials, 11(11), 3302-3308. doi:10.1021/cm9903935

Inagaki, S., Guan, S., Ohsuna, T., & Terasaki, O. (2002). An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature, 416(6878), 304-307. doi:10.1038/416304a

Díaz, U., García, T., Velty, A., & Corma, A. (2009). Hybrid organic–inorganic catalytic porous materials synthesized at neutral pH in absence of structural directing agents. Journal of Materials Chemistry, 19(33), 5970. doi:10.1039/b906821j

Corriu, R. J. P., Mehdi, A., Reyé, C., & Thieuleux, C. (2004). Direct Synthesis of Functionalized Mesoporous Silica by Non-Ionic Assembly Routes. Quantitative Chemical Transformations within the Materials Leading to Strongly Chelated Transition Metal Ions. Chemistry of Materials, 16(1), 159-166. doi:10.1021/cm034903d

Cerveau, G., Corriu, R. J. P., Dabiens, B., & Le Bideau, J. (2000). Synthesis of Stable Organo(bis-silanetriols): X-Ray Powder Structure of 1,4-Bis(trihydroxysilyl)benzene. Angewandte Chemie, 112(24), 4707-4711. doi:10.1002/1521-3757(20001215)112:24<4707::aid-ange4707>3.0.co;2-p

Cerveau, G., Corriu, R. J. P., Dabiens, B., & Le Bideau, J. (2000). Synthesis of Stable Organo(bis-silanetriols): X-Ray Powder Structure of 1,4-Bis(trihydroxysilyl)benzene. Angewandte Chemie International Edition, 39(24), 4533-4537. doi:10.1002/1521-3773(20001215)39:24<4533::aid-anie4533>3.0.co;2-8

Shea, K. J., Loy, D. A., & Webster, O. (1992). Arylsilsesquioxane gels and related materials. New hybrids of organic and inorganic networks. Journal of the American Chemical Society, 114(17), 6700-6710. doi:10.1021/ja00043a014

Alauzun, J., Mehdi, A., Reyé, C., & Corriu, R. J. P. (2006). Mesoporous Materials with an Acidic Framework and Basic Pores. A Successful Cohabitation. Journal of the American Chemical Society, 128(27), 8718-8719. doi:10.1021/ja0622960

Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Mesoporöse organisch-anorganische Hybridmaterialien auf Silicabasis. Angewandte Chemie, 118(20), 3290-3328. doi:10.1002/ange.200503075

Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(20), 3216-3251. doi:10.1002/anie.200503075

Hatton, B. D., Landskron, K., Hunks, W. J., Bennett, M. R., Shukaris, D., Perovic, D. D., & Ozin, G. A. (2006). Materials chemistry for low-k materials. Materials Today, 9(3), 22-31. doi:10.1016/s1369-7021(06)71387-6

Budroni, G., & Corma, A. (2006). Gold–Organic–Inorganic High-Surface-Area Materials as Precursors of Highly Active Catalysts. Angewandte Chemie International Edition, 45(20), 3328-3331. doi:10.1002/anie.200600552

Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z

Agaskar, P. A. (1991). New synthetic route to the hydridospherosiloxanes Oh-H8Si8O12 and D5h-H10Si10O15. Inorganic Chemistry, 30(13), 2707-2708. doi:10.1021/ic00013a002

Jiang, J., Yu, J., & Corma, A. (2010). Zeolithe mit sehr großen Poren als Bindeglied zwischen mikro- und mesoporösen Strukturen. Angewandte Chemie, 122(18), 3186-3212. doi:10.1002/ange.200904016

Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016

Jiang, J., Jorda, J. L., Yu, J., Baumes, L. A., Mugnaioli, E., Diaz-Cabanas, M. J., … Corma, A. (2011). Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science, 333(6046), 1131-1134. doi:10.1126/science.1208652

Sulaiman, S., Bhaskar, A., Zhang, J., Guda, R., Goodson, T., & Laine, R. M. (2008). Molecules with Perfect Cubic Symmetry as Nanobuilding Blocks for 3-D Assemblies. Elaboration of Octavinylsilsesquioxane. Unusual Luminescence Shifts May Indicate Extended Conjugation Involving the Silsesquioxane Core. Chemistry of Materials, 20(17), 5563-5573. doi:10.1021/cm801017e

Hagiwara, Y., Shimojima, A., & Kuroda, K. (2008). Alkoxysilylated-Derivatives of Double-Four-Ring Silicate as Novel Building Blocks of Silica-Based Materials†. Chemistry of Materials, 20(3), 1147-1153. doi:10.1021/cm0716194

Shimojima, A., Goto, R., Atsumi, N., & Kuroda, K. (2008). Self-Assembly of Alkyl-Substituted Cubic Siloxane Cages into Ordered Hybrid Materials. Chemistry - A European Journal, 14(28), 8500-8506. doi:10.1002/chem.200801106

Zhang, L., Abbenhuis, H. C. L., Yang, Q., Wang, Y.-M., Magusin, P. C. M. M., Mezari, B., … Li, C. (2007). Mesoporous Organic–Inorganic Hybrid Materials Built Using Polyhedral Oligomeric Silsesquioxane Blocks. Angewandte Chemie, 119(26), 5091-5094. doi:10.1002/ange.200700640

Zhang, L., Abbenhuis, H. C. L., Yang, Q., Wang, Y.-M., Magusin, P. C. M. M., Mezari, B., … Li, C. (2007). Mesoporous Organic–Inorganic Hybrid Materials Built Using Polyhedral Oligomeric Silsesquioxane Blocks. Angewandte Chemie International Edition, 46(26), 5003-5006. doi:10.1002/anie.200700640

Zhang, L., Yang, Q., Yang, H., Liu, J., Xin, H., Mezari, B., … Li, C. (2008). Super-microporous organosilicas synthesized from well-defined nanobuilding units. J. Mater. Chem., 18(4), 450-457. doi:10.1039/b715031h

Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0

Bion, N., Ferreira, P., Valente, A., Gonçalves, I. S., & Rocha, J. (2003). Ordered benzene–silica hybrids with molecular-scale periodicity in the walls and different mesopore sizes. J. Mater. Chem., 13(8), 1910-1913. doi:10.1039/b304430k

Fujita, S., & Inagaki, S. (2008). Self-Organization of Organosilica Solids with Molecular-Scale and Mesoscale Periodicities†. Chemistry of Materials, 20(3), 891-908. doi:10.1021/cm702271v

Jaroniec, M., & Solovyov, L. A. (2006). Improvement of the Kruk−Jaroniec−Sayari Method for Pore Size Analysis of Ordered Silicas with Cylindrical Mesopores. Langmuir, 22(16), 6757-6760. doi:10.1021/la0609571

Kapoor, M. P., & Inagaki, S. (2006). Highly Ordered Mesoporous Organosilica Hybrid Materials. Bulletin of the Chemical Society of Japan, 79(10), 1463-1475. doi:10.1246/bcsj.79.1463

Sauer, J., Ugliengo, P., Garrone, E., & Saunders, V. R. (1994). Theoretical Study of van der Waals Complexes at Surface Sites in Comparison with the Experiment. Chemical Reviews, 94(7), 2095-2160. doi:10.1021/cr00031a014

De Man, A. J. M., & van Santen, R. A. (1992). The relation between zeolite framework structure and vibrational spectra. Zeolites, 12(3), 269-279. doi:10.1016/s0144-2449(05)80295-7

Baertsch, M., Bornhauser, P., Calzaferri, G., & Imhof, R. (1994). H8Si8O12: A model for the vibrational structure of zeolite A. The Journal of Physical Chemistry, 98(11), 2817-2831. doi:10.1021/j100062a016

Marcolli, C., Lainé,, P., Bühler, R., Calzaferri, G., & Tomkinson, J. (1997). Vibrations of H8Si8O12, D8Si8O12, and H10Si10O15As Determined by INS, IR, and Raman Experiments†. The Journal of Physical Chemistry B, 101(7), 1171-1179. doi:10.1021/jp962742d

Villaescusa, L. A., Márquez, F. M., Zicovich-Wilson, C. M., & Camblor, M. A. (2002). Infrared Investigation of Fluoride Occluded in Double Four-Member Rings in Zeolites. The Journal of Physical Chemistry B, 106(10), 2796-2800. doi:10.1021/jp013190o

Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909

Huang, Y., & Jiang, Z. (1997). Vibrational spectra of completely siliceous zeolite A. Microporous Materials, 12(4-6), 341-345. doi:10.1016/s0927-6513(97)00082-5

Mozgawa, W., Jastrzębski, W., & Handke, M. (2005). Vibrational spectra of D4R and D6R structural units. Journal of Molecular Structure, 744-747, 663-670. doi:10.1016/j.molstruc.2004.12.051

Díaz-Morales, U., Bellussi, G., Carati, A., Millini, R., Parker, W. O., & Rizzo, C. (2006). Ethane–silica hybrid material with ordered hexagonal mesoporous structure. Microporous and Mesoporous Materials, 87(3), 185-191. doi:10.1016/j.micromeso.2005.08.004

Wu, C.-G., & Bein, T. (1996). Microwave synthesis of molecular sieve MCM-41. Chemical Communications, (8), 925. doi:10.1039/cc9960000925

Loy, D. A., Beach, J. V., Baugher, B. M., Assink, R. A., Shea, K. J., Tran, J., & Small, J. H. (1999). Dialkylene Carbonate-Bridged Polysilsesquioxanes. Hybrid Organic−Inorganic Sol−Gels with a Thermally Labile Bridging Group. Chemistry of Materials, 11(11), 3333-3341. doi:10.1021/cm990405m

Rodriguez, I., Iborra, S., Rey, F., & Corma, A. (2000). Heterogeneized Brönsted base catalysts for fine chemicals production: grafted quaternary organic ammonium hydroxides as catalyst for the production of chromenes and coumarins. Applied Catalysis A: General, 194-195, 241-252. doi:10.1016/s0926-860x(99)00371-3

CLIMENT, M. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225(2), 316-326. doi:10.1016/j.jcat.2004.04.027

Prout, F. S., Beaucaire, V. D., Dyrkacz, G. R., Koppes, W. M., Kuznicki, R. E., Marlewski, T. A., … Puda, J. M. (1973). Konevenagel Reaction. Kinetic study of the reaction of (+)-3-methyl-cyclohexanone with malononitrile. The Journal of Organic Chemistry, 38(8), 1512-1517. doi:10.1021/jo00948a015

Guyot, J., & Kergomard, A. (1983). Cinétique et mécanisme de la réaction de knoevenagel dans le benzène-2. Tetrahedron, 39(7), 1167-1179. doi:10.1016/s0040-4020(01)91880-0

Luzzio, F. A. (2001). The Henry reaction: recent examples. Tetrahedron, 57(6), 915-945. doi:10.1016/s0040-4020(00)00965-0

Morao, I., & Cossío, F. P. (1997). Dendritic Catalysts for the Nitroaldol (Henry) Reaction. Tetrahedron Letters, 38(36), 6461-6464. doi:10.1016/s0040-4039(97)01477-9

Motokura, K., Tomita, M., Tada, M., & Iwasawa, Y. (2008). Acid-Base Bifunctional Catalysis of Silica-Alumina-Supported Organic Amines for Carbon-Carbon Bond-Forming Reactions. Chemistry - A European Journal, 14(13), 4017-4027. doi:10.1002/chem.200702048

Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. doi:10.1351/pac198557040603

Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem