- -

Regioselective Hydration of Alkynes by Iron(III) Lewis/Brønsted Catalysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Regioselective Hydration of Alkynes by Iron(III) Lewis/Brønsted Catalysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cabrero Antonino, Jose Ramón es_ES
dc.contributor.author Leyva Perez, Antonio es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2013-11-15T11:56:25Z
dc.date.issued 2012-08-27
dc.identifier.issn 0947-6539
dc.identifier.uri http://hdl.handle.net/10251/33630
dc.description.abstract The triflimide iron(III) salt [Fe(NTf2)3] promotes the direct hydration of terminal and internal alkynes with very good Markovnikov regioselectivities and high yields. The enhanced carbophilic Lewis acidity of the FeIII cation mediated by the weakly-coordinating triflimide anion is crucial for the catalytic activity. The iron(III) metal salt can be recycled in the form of the OPPh3/[Fe(NTf2)3] system with similar activity and selectivity. However, spectroscopic and kinetic studies show that [Fe(NTf2)3] hydrolyzes under the reaction conditions and that catalytically less active Brønsted species are formed, which points to a Lewis/Brønsted co-catalysis. This triflimide-based catalytic system is regioselective for the hydration of internal aryl-alkynes and opens the door to a new synthetic route to alkyl ketophenones. As a proof of concept, the synthesis of two antipsychotics Haloperidol and Melperone, with general butyrophenone-like structure, is shown. es_ES
dc.description.sponsorship The work has been supported by Consolider-Ingenio 2010 (proyecto MULTICAT), and PROMETEO from Generalitat Valenciana. J.R.C.A. thanks MCIINN for a pre-doctoral FPU fellowship. A. L. P. thanks ITQ for financial support. We thank Dr. J. A. Vidal-Moya for the EPR measurements. en_EN
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Alkynes es_ES
dc.subject Anions es_ES
dc.subject Ketones es_ES
dc.subject Regioselectivity es_ES
dc.subject Iron es_ES
dc.subject Hydration es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Regioselective Hydration of Alkynes by Iron(III) Lewis/Brønsted Catalysis es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/chem.201200580
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ / es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Cabrero Antonino, JR.; Leyva Perez, A.; Corma Canós, A. (2012). Regioselective Hydration of Alkynes by Iron(III) Lewis/Brønsted Catalysis. Chemistry - A European Journal. 18(35):11107-11114. https://doi.org/10.1002/chem.201200580 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/chem.201200580 es_ES
dc.description.upvformatpinicio 11107 es_ES
dc.description.upvformatpfin 11114 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 35 es_ES
dc.relation.senia 239329
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Instituto de Tecnología Química UPV-CSIC es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Hintermann, L., & Labonne, A. (2007). Catalytic Hydration of Alkynes and Its Application in Synthesis. Synthesis, 2007(8), 1121-1150. doi:10.1055/s-2007-966002 es_ES
dc.description.references Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u es_ES
dc.description.references Alonso, F., Beletskaya, I. P., & Yus, M. (2004). Transition-Metal-Catalyzed Addition of Heteroatom−Hydrogen Bonds to Alkynes. Chemical Reviews, 104(6), 3079-3160. doi:10.1021/cr0201068 es_ES
dc.description.references Killian, D. B., Hennion, G. F., & Nieuwland, J. A. (1936). The Preparation of Some Ketals of Alkylacetylenes with the Higher Alcohols1. Journal of the American Chemical Society, 58(1), 80-81. doi:10.1021/ja01292a026 es_ES
dc.description.references Killian, D. B., Hennion, G. F., & Nieuwland, J. A. (1934). The Addition of Methyl Alcohol to Monovinylacetylene. Journal of the American Chemical Society, 56(8), 1786-1787. doi:10.1021/ja01323a042 es_ES
dc.description.references Hennion, G. F., Killian, D. B., Vaughn, T. H., & Nieuwland, J. A. (1934). Condensation of Alkyl Acetylenes with Oxy Compounds. Journal of the American Chemical Society, 56(5), 1130-1132. doi:10.1021/ja01320a039 es_ES
dc.description.references Nieuwland, J. A., Vogt, R. R., & Foohey, W. L. (1930). A NEW METHOD OF PREPARING ACETALS. Journal of the American Chemical Society, 52(3), 1018-1024. doi:10.1021/ja01366a026 es_ES
dc.description.references Kutscheroff, M. G. (1909). Über die Hydratation der Kohlenwasserstoffe der Acetylenreihe durch Cadmium-, Zink- und Magnesiumsalze. Berichte der deutschen chemischen Gesellschaft, 42(2), 2759-2762. doi:10.1002/cber.190904202197 es_ES
dc.description.references Kutscheroff, M. (1884). Ueber die Einwirkung der Kohlenwasserstoffe der Acetylenreihe auf Quecksilberoxyd und dessen Salze. Berichte der deutschen chemischen Gesellschaft, 17(1), 13-29. doi:10.1002/cber.18840170105 es_ES
dc.description.references Utimoto, K. (1983). Palladium catalyzed synthesis of heterocycles. Pure and Applied Chemistry, 55(11), 1845-1852. doi:10.1351/pac198355111845 es_ES
dc.description.references Hiscox, W., & Jennings, P. W. (1990). Catalytic hydration of alkynes with Zeise’s dimer. Organometallics, 9(7), 1997-1999. doi:10.1021/om00157a005 es_ES
dc.description.references Thuong, M. B. T., Mann, A., & Wagner, A. (2012). Mild chemo-selective hydration of terminal alkynes catalysed by AgSbF6. Chem. Commun., 48(3), 434-436. doi:10.1039/c1cc12928g es_ES
dc.description.references Corma, A., Ruiz, V. R., Leyva-Pérez, A., & Sabater, M. J. (2010). Regio- and Stereoselective Intermolecular Hydroalkoxylation of Alkynes Catalysed by Cationic Gold(I) Complexes. Advanced Synthesis & Catalysis, 352(10), 1701-1710. doi:10.1002/adsc.201000094 es_ES
dc.description.references Marion, N., Ramón, R. S., & Nolan, S. P. (2009). [(NHC)AuI]-Catalyzed Acid-Free Alkyne Hydration at Part-per-Million Catalyst Loadings. Journal of the American Chemical Society, 131(2), 448-449. doi:10.1021/ja809403e es_ES
dc.description.references Leyva, A., & Corma, A. (2009). Isolable Gold(I) Complexes Having One Low-Coordinating Ligand as Catalysts for the Selective Hydration of Substituted Alkynes at Room Temperature without Acidic Promoters. The Journal of Organic Chemistry, 74(5), 2067-2074. doi:10.1021/jo802558e es_ES
dc.description.references Santos, L. L., Ruiz, V. R., Sabater, M. J., & Corma, A. (2008). Regioselective transformation of alkynes into cyclic acetals and thioacetals with a gold(I) catalyst: comparison with Brønsted acid catalysts. Tetrahedron, 64(34), 7902-7909. doi:10.1016/j.tet.2008.06.032 es_ES
dc.description.references Roembke, P., Schmidbaur, H., Cronje, S., & Raubenheimer, H. (2004). Application of (phosphine)gold(I) carboxylates, sulfonates and related compounds as highly efficient catalysts for the hydration of alkynes. Journal of Molecular Catalysis A: Chemical, 212(1-2), 35-42. doi:10.1016/j.molcata.2003.11.011 es_ES
dc.description.references Casado, R., Contel, M., Laguna, M., Romero, P., & Sanz, S. (2003). Organometallic Gold(III) Compounds as Catalysts for the Addition of Water and Methanol to Terminal Alkynes. Journal of the American Chemical Society, 125(39), 11925-11935. doi:10.1021/ja036049x es_ES
dc.description.references Mizushima, E., Sato, K., Hayashi, T., & Tanaka, M. (2002). Angewandte Chemie, 114(23), 4745-4747. doi:10.1002/1521-3757(20021202)114:23<4745::aid-ange4745>3.0.co;2-s es_ES
dc.description.references Mizushima, E., Sato, K., Hayashi, T., & Tanaka, M. (2002). Highly Efficient AuI-Catalyzed Hydration of Alkynes. Angewandte Chemie International Edition, 41(23), 4563-4565. doi:10.1002/1521-3773(20021202)41:23<4563::aid-anie4563>3.0.co;2-u es_ES
dc.description.references Teles, J. H., Brode, S., & Chabanas, M. (1998). Kationische Gold(I)-Komplexe: hocheffiziente Katalysatoren für die Addition von Alkoholen an Alkine. Angewandte Chemie, 110(10), 1475-1478. doi:10.1002/(sici)1521-3757(19980518)110:10<1475::aid-ange1475>3.0.co;2-l es_ES
dc.description.references Teles, J. H., Brode, S., & Chabanas, M. (1998). Cationic Gold(I) Complexes: Highly Efficient Catalysts for the Addition of Alcohols to Alkynes. Angewandte Chemie International Edition, 37(10), 1415-1418. doi:10.1002/(sici)1521-3773(19980605)37:10<1415::aid-anie1415>3.0.co;2-n es_ES
dc.description.references Fukuda, Y., & Utimoto, K. (1991). Effective transformation of unactivated alkynes into ketones or acetals with a gold(III) catalyst. The Journal of Organic Chemistry, 56(11), 3729-3731. doi:10.1021/jo00011a058 es_ES
dc.description.references Boeck, F., Kribber, T., Xiao, L., & Hintermann, L. (2011). Mixed Phosphane η5-CpRuCl(PR3)2Complexes as Ambifunctional Catalysts for Anti-Markovnikov Hydration of Terminal Alkynes. Journal of the American Chemical Society, 133(21), 8138-8141. doi:10.1021/ja2026823 es_ES
dc.description.references Labonne, A., Kribber, T., & Hintermann, L. (2006). Highly Active in Situ Catalysts for Anti-Markovnikov Hydration of Terminal Alkynes. Organic Letters, 8(25), 5853-5856. doi:10.1021/ol062455k es_ES
dc.description.references Chevallier, F., & Breit, B. (2006). Self-Assembled Bidentate Ligands for Ru-Catalyzedanti-Markovnikov Hydration of Terminal Alkynes. Angewandte Chemie, 118(10), 1629-1632. doi:10.1002/ange.200503826 es_ES
dc.description.references Chevallier, F., & Breit, B. (2006). Self-Assembled Bidentate Ligands for Ru-Catalyzedanti-Markovnikov Hydration of Terminal Alkynes. Angewandte Chemie International Edition, 45(10), 1599-1602. doi:10.1002/anie.200503826 es_ES
dc.description.references Grotjahn, D. B., & Lev, D. A. (2004). A General Bifunctional Catalyst for the Anti-Markovnikov Hydration of Terminal Alkynes to Aldehydes Gives Enzyme-Like Rate and Selectivity Enhancements. Journal of the American Chemical Society, 126(39), 12232-12233. doi:10.1021/ja046360u es_ES
dc.description.references Tokunaga, M., Suzuki, T., Koga, N., Fukushima, T., Horiuchi, A., & Wakatsuki, Y. (2001). Ruthenium-Catalyzed Hydration of 1-Alkynes to Give Aldehydes:  Insight intoanti-Markovnikov Regiochemistry. Journal of the American Chemical Society, 123(48), 11917-11924. doi:10.1021/ja0119292 es_ES
dc.description.references Suzuki, T., Tokunaga, M., & Wakatsuki, Y. (2001). Ruthenium Complex-Catalyzedanti-Markovnikov Hydration of Terminal Alkynes. Organic Letters, 3(5), 735-737. doi:10.1021/ol0003937 es_ES
dc.description.references Grotjahn, D. B., Incarvito, C. D., & Rheingold, A. L. (2001). Combined Effects of Metal and Ligand Capable of Accepting a Proton or Hydrogen Bond Catalyze Anti-Markovnikov Hydration of Terminal Alkynes. Angewandte Chemie, 113(20), 4002-4005. doi:10.1002/1521-3757(20011015)113:20<4002::aid-ange4002>3.0.co;2-r es_ES
dc.description.references Grotjahn, D. B., Incarvito, C. D., & Rheingold, A. L. (2001). Combined Effects of Metal and Ligand Capable of Accepting a Proton or Hydrogen Bond Catalyze Anti-Markovnikov Hydration of Terminal Alkynes. Angewandte Chemie International Edition, 40(20), 3884-3887. doi:10.1002/1521-3773(20011015)40:20<3884::aid-anie3884>3.0.co;2-7 es_ES
dc.description.references Alvarez, P., Bassetti, M., Gimeno, J., & Mancini, G. (2001). Hydration of terminal alkynes to aldehydes in aqueous micellar solutions by ruthenium(II) catalysis; first anti-Markovnikov addition of water to propargylic alcohols. Tetrahedron Letters, 42(48), 8467-8470. doi:10.1016/s0040-4039(01)01841-x es_ES
dc.description.references Tokunaga, M., & Wakatsuki, Y. (1998). Die erste Anti-Markownikow-Hydratisierung terminaler Alkine: Ruthenium(II)/ Phosphan-katalysierte Bildung von Aldehyden. Angewandte Chemie, 110(20), 3024-3027. doi:10.1002/(sici)1521-3757(19981016)110:20<3024::aid-ange3024>3.0.co;2-0 es_ES
dc.description.references Tokunaga, M., & Wakatsuki, Y. (1998). The First Anti-Markovnikov Hydration of Terminal Alkynes: Formation of Aldehydes Catalyzed by a Ruthenium(II)/Phosphane Mixture. Angewandte Chemie International Edition, 37(20), 2867-2869. doi:10.1002/(sici)1521-3773(19981102)37:20<2867::aid-anie2867>3.0.co;2-e es_ES
dc.description.references Bruneau, C., & Dixneuf, P. H. (1997). Selective transformations of alkynes with ruthenium catalysts. Chemical Communications, (6), 507-512. doi:10.1039/a604112d es_ES
dc.description.references Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2012). Iron-Catalysed Markovnikov Hydrothiolation of Styrenes. Advanced Synthesis & Catalysis, 354(4), 678-687. doi:10.1002/adsc.201100731 es_ES
dc.description.references Coulombel, L., Grau, F., Weïwer, M., Favier, I., Chaminade, X., Heumann, A., … Duñach, E. (2008). LewisSuper‐Acid Catalyzed Cyclizations: A New Route to Fragrance Compounds. Chemistry & Biodiversity, 5(6), 1070-1082. doi:10.1002/cbdv.200890086 es_ES
dc.description.references Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2010). Iron-Catalysed Regio- and Stereoselective Head-to-Tail Dimerisation of Styrenes. Advanced Synthesis & Catalysis, 352(10), 1571-1576. doi:10.1002/adsc.201000096 es_ES
dc.description.references Kohno, K., Nakagawa, K., Yahagi, T., Choi, J.-C., Yasuda, H., & Sakakura, T. (2009). Fe(OTf)3-Catalyzed Addition of sp C−H Bonds to Olefins. Journal of the American Chemical Society, 131(8), 2784-2785. doi:10.1021/ja8090593 es_ES
dc.description.references Correa, A., García Mancheño, O., & Bolm, C. (2008). Iron-catalysed carbon–heteroatom and heteroatom–heteroatom bond forming processes. Chemical Society Reviews, 37(6), 1108. doi:10.1039/b801794h es_ES
dc.description.references Enthaler, S., Junge, K., & Beller, M. (2008). Eisenkatalyse – ein nachhaltiges Prinzip mit Perspektive? Angewandte Chemie, 120(18), 3363-3367. doi:10.1002/ange.200800012 es_ES
dc.description.references Enthaler, S., Junge, K., & Beller, M. (2008). Sustainable Metal Catalysis with Iron: From Rust to a Rising Star? Angewandte Chemie International Edition, 47(18), 3317-3321. doi:10.1002/anie.200800012 es_ES
dc.description.references Bolm, C., Legros, J., Le Paih, J., & Zani, L. (2004). Iron-Catalyzed Reactions in Organic Synthesis. Chemical Reviews, 104(12), 6217-6254. doi:10.1021/cr040664h es_ES
dc.description.references Antoniotti, S., Dalla, V., & Duñach, E. (2010). Metal Triflimidates: Better than Metal Triflates as Catalysts in Organic Synthesis-The Effect of a Highly Delocalized Counteranion. Angewandte Chemie International Edition, 49(43), 7860-7888. doi:10.1002/anie.200906407 es_ES
dc.description.references Nakamura, Y., Maki, T., Wang, X., Ishihara, K., & Yamamoto, H. (2006). Iron(III)–Zirconium(IV) Combined Salt Immobilized onN-(Polystyrylbutyl)pyridinium Triflylimide as a Reusable Catalyst for a Dehydrative Esterification Reaction. Advanced Synthesis & Catalysis, 348(12-13), 1505-1510. doi:10.1002/adsc.200606126 es_ES
dc.description.references Mathieu, B., & Ghosez, L. (2002). Trimethylsilyl bis(trifluoromethanesulfonyl)imide as a tolerant and environmentally benign Lewis acid catalyst of the Diels–Alder reaction. Tetrahedron, 58(41), 8219-8226. doi:10.1016/s0040-4020(02)00971-7 es_ES
dc.description.references Nie, J., Kobayashi, H., & Sonoda, T. (1997). Copper(II) bis((trifluoromethyl) sulfonyl) amide. A novel Lewis acid catalyst in Diels-Alder reactions of cyclopentadiene with methyl vinyl ketone. Catalysis Today, 36(1), 81-84. doi:10.1016/s0920-5861(96)00199-x es_ES
dc.description.references Wu, X.-F., Bezier, D., & Darcel, C. (2009). Development of the First Iron Chloride-Catalyzed Hydration of Terminal Alkynes. Advanced Synthesis & Catalysis, 351(3), 367-370. doi:10.1002/adsc.200800666 es_ES
dc.description.references Miranda, P. O., Díaz, D. D., Padrón, J. I., Ramírez, M. A., & Martín, V. S. (2005). Fe(III) Halides as Effective Catalysts in Carbon−Carbon Bond Formation:  Synthesis of 1,5-Dihalo-1,4-dienes, α,β-Unsaturated Ketones, and Cyclic Ethers. The Journal of Organic Chemistry, 70(1), 57-62. doi:10.1021/jo048410j es_ES
dc.description.references Pierre Damiano, J., & Postel, M. (1996). FeCl3H2O: a specific system for arylacetylene hydration. Journal of Organometallic Chemistry, 522(2), 303-305. doi:10.1016/0022-328x(96)06294-8 es_ES
dc.description.references (s. f.). doi:10.1021/ol047509 es_ES
dc.description.references Cahiez, G., Chaboche, C., Mahuteau-Betzer, F., & Ahr, M. (2005). Iron-Catalyzed Homo-Coupling of Simple and Functionalized Arylmagnesium Reagents. Organic Letters, 7(10), 1943-1946. doi:10.1021/ol050340v es_ES
dc.description.references Rao, C. B., Rao, D. C., Babu, D. C., & Venkateswarlu, Y. (2010). Retro-Claisen Condensation with FeIII as Catalyst under Solvent-Free Conditions. European Journal of Organic Chemistry, 2010(15), 2855-2859. doi:10.1002/ejoc.201000140 es_ES
dc.description.references Biswas, S., Maiti, S., & Jana, U. (2010). An Efficient Iron-Catalyzed Carbon-Carbon Single-Bond Cleavage via Retro-Claisen Condensation: A Mild and Convenient Approach to Synthesize a Variety of Esters or Ketones. European Journal of Organic Chemistry, 2010(15), 2861-2866. doi:10.1002/ejoc.201000128 es_ES
dc.description.references Kook, C. S., Reed, M. F., & Digenis, G. A. (1975). Preparation of fluorine-18-labeled haloperidol. Journal of Medicinal Chemistry, 18(5), 533-535. doi:10.1021/jm00239a023 es_ES
dc.description.references (s. f.). doi:10.1021/ol061174 es_ES
dc.description.references Dang, T. T., Boeck, F., & Hintermann, L. (2011). Hidden Brønsted Acid Catalysis: Pathways of Accidental or Deliberate Generation of Triflic Acid from Metal Triflates. The Journal of Organic Chemistry, 76(22), 9353-9361. doi:10.1021/jo201631x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem