Hintermann, L., & Labonne, A. (2007). Catalytic Hydration of Alkynes and Its Application in Synthesis. Synthesis, 2007(8), 1121-1150. doi:10.1055/s-2007-966002
Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u
Alonso, F., Beletskaya, I. P., & Yus, M. (2004). Transition-Metal-Catalyzed Addition of Heteroatom−Hydrogen Bonds to Alkynes. Chemical Reviews, 104(6), 3079-3160. doi:10.1021/cr0201068
[+]
Hintermann, L., & Labonne, A. (2007). Catalytic Hydration of Alkynes and Its Application in Synthesis. Synthesis, 2007(8), 1121-1150. doi:10.1055/s-2007-966002
Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u
Alonso, F., Beletskaya, I. P., & Yus, M. (2004). Transition-Metal-Catalyzed Addition of Heteroatom−Hydrogen Bonds to Alkynes. Chemical Reviews, 104(6), 3079-3160. doi:10.1021/cr0201068
Killian, D. B., Hennion, G. F., & Nieuwland, J. A. (1936). The Preparation of Some Ketals of Alkylacetylenes with the Higher Alcohols1. Journal of the American Chemical Society, 58(1), 80-81. doi:10.1021/ja01292a026
Killian, D. B., Hennion, G. F., & Nieuwland, J. A. (1934). The Addition of Methyl Alcohol to Monovinylacetylene. Journal of the American Chemical Society, 56(8), 1786-1787. doi:10.1021/ja01323a042
Hennion, G. F., Killian, D. B., Vaughn, T. H., & Nieuwland, J. A. (1934). Condensation of Alkyl Acetylenes with Oxy Compounds. Journal of the American Chemical Society, 56(5), 1130-1132. doi:10.1021/ja01320a039
Nieuwland, J. A., Vogt, R. R., & Foohey, W. L. (1930). A NEW METHOD OF PREPARING ACETALS. Journal of the American Chemical Society, 52(3), 1018-1024. doi:10.1021/ja01366a026
Kutscheroff, M. G. (1909). Über die Hydratation der Kohlenwasserstoffe der Acetylenreihe durch Cadmium-, Zink- und Magnesiumsalze. Berichte der deutschen chemischen Gesellschaft, 42(2), 2759-2762. doi:10.1002/cber.190904202197
Kutscheroff, M. (1884). Ueber die Einwirkung der Kohlenwasserstoffe der Acetylenreihe auf Quecksilberoxyd und dessen Salze. Berichte der deutschen chemischen Gesellschaft, 17(1), 13-29. doi:10.1002/cber.18840170105
Utimoto, K. (1983). Palladium catalyzed synthesis of heterocycles. Pure and Applied Chemistry, 55(11), 1845-1852. doi:10.1351/pac198355111845
Hiscox, W., & Jennings, P. W. (1990). Catalytic hydration of alkynes with Zeise’s dimer. Organometallics, 9(7), 1997-1999. doi:10.1021/om00157a005
Thuong, M. B. T., Mann, A., & Wagner, A. (2012). Mild chemo-selective hydration of terminal alkynes catalysed by AgSbF6. Chem. Commun., 48(3), 434-436. doi:10.1039/c1cc12928g
Corma, A., Ruiz, V. R., Leyva-Pérez, A., & Sabater, M. J. (2010). Regio- and Stereoselective Intermolecular Hydroalkoxylation of Alkynes Catalysed by Cationic Gold(I) Complexes. Advanced Synthesis & Catalysis, 352(10), 1701-1710. doi:10.1002/adsc.201000094
Marion, N., Ramón, R. S., & Nolan, S. P. (2009). [(NHC)AuI]-Catalyzed Acid-Free Alkyne Hydration at Part-per-Million Catalyst Loadings. Journal of the American Chemical Society, 131(2), 448-449. doi:10.1021/ja809403e
Leyva, A., & Corma, A. (2009). Isolable Gold(I) Complexes Having One Low-Coordinating Ligand as Catalysts for the Selective Hydration of Substituted Alkynes at Room Temperature without Acidic Promoters. The Journal of Organic Chemistry, 74(5), 2067-2074. doi:10.1021/jo802558e
Santos, L. L., Ruiz, V. R., Sabater, M. J., & Corma, A. (2008). Regioselective transformation of alkynes into cyclic acetals and thioacetals with a gold(I) catalyst: comparison with Brønsted acid catalysts. Tetrahedron, 64(34), 7902-7909. doi:10.1016/j.tet.2008.06.032
Roembke, P., Schmidbaur, H., Cronje, S., & Raubenheimer, H. (2004). Application of (phosphine)gold(I) carboxylates, sulfonates and related compounds as highly efficient catalysts for the hydration of alkynes. Journal of Molecular Catalysis A: Chemical, 212(1-2), 35-42. doi:10.1016/j.molcata.2003.11.011
Casado, R., Contel, M., Laguna, M., Romero, P., & Sanz, S. (2003). Organometallic Gold(III) Compounds as Catalysts for the Addition of Water and Methanol to Terminal Alkynes. Journal of the American Chemical Society, 125(39), 11925-11935. doi:10.1021/ja036049x
Mizushima, E., Sato, K., Hayashi, T., & Tanaka, M. (2002). Angewandte Chemie, 114(23), 4745-4747. doi:10.1002/1521-3757(20021202)114:23<4745::aid-ange4745>3.0.co;2-s
Mizushima, E., Sato, K., Hayashi, T., & Tanaka, M. (2002). Highly Efficient AuI-Catalyzed Hydration of Alkynes. Angewandte Chemie International Edition, 41(23), 4563-4565. doi:10.1002/1521-3773(20021202)41:23<4563::aid-anie4563>3.0.co;2-u
Teles, J. H., Brode, S., & Chabanas, M. (1998). Kationische Gold(I)-Komplexe: hocheffiziente Katalysatoren für die Addition von Alkoholen an Alkine. Angewandte Chemie, 110(10), 1475-1478. doi:10.1002/(sici)1521-3757(19980518)110:10<1475::aid-ange1475>3.0.co;2-l
Teles, J. H., Brode, S., & Chabanas, M. (1998). Cationic Gold(I) Complexes: Highly Efficient Catalysts for the Addition of Alcohols to Alkynes. Angewandte Chemie International Edition, 37(10), 1415-1418. doi:10.1002/(sici)1521-3773(19980605)37:10<1415::aid-anie1415>3.0.co;2-n
Fukuda, Y., & Utimoto, K. (1991). Effective transformation of unactivated alkynes into ketones or acetals with a gold(III) catalyst. The Journal of Organic Chemistry, 56(11), 3729-3731. doi:10.1021/jo00011a058
Boeck, F., Kribber, T., Xiao, L., & Hintermann, L. (2011). Mixed Phosphane η5-CpRuCl(PR3)2Complexes as Ambifunctional Catalysts for Anti-Markovnikov Hydration of Terminal Alkynes. Journal of the American Chemical Society, 133(21), 8138-8141. doi:10.1021/ja2026823
Labonne, A., Kribber, T., & Hintermann, L. (2006). Highly Active in Situ Catalysts for Anti-Markovnikov Hydration of Terminal Alkynes. Organic Letters, 8(25), 5853-5856. doi:10.1021/ol062455k
Chevallier, F., & Breit, B. (2006). Self-Assembled Bidentate Ligands for Ru-Catalyzedanti-Markovnikov Hydration of Terminal Alkynes. Angewandte Chemie, 118(10), 1629-1632. doi:10.1002/ange.200503826
Chevallier, F., & Breit, B. (2006). Self-Assembled Bidentate Ligands for Ru-Catalyzedanti-Markovnikov Hydration of Terminal Alkynes. Angewandte Chemie International Edition, 45(10), 1599-1602. doi:10.1002/anie.200503826
Grotjahn, D. B., & Lev, D. A. (2004). A General Bifunctional Catalyst for the Anti-Markovnikov Hydration of Terminal Alkynes to Aldehydes Gives Enzyme-Like Rate and Selectivity Enhancements. Journal of the American Chemical Society, 126(39), 12232-12233. doi:10.1021/ja046360u
Tokunaga, M., Suzuki, T., Koga, N., Fukushima, T., Horiuchi, A., & Wakatsuki, Y. (2001). Ruthenium-Catalyzed Hydration of 1-Alkynes to Give Aldehydes: Insight intoanti-Markovnikov Regiochemistry. Journal of the American Chemical Society, 123(48), 11917-11924. doi:10.1021/ja0119292
Suzuki, T., Tokunaga, M., & Wakatsuki, Y. (2001). Ruthenium Complex-Catalyzedanti-Markovnikov Hydration of Terminal Alkynes. Organic Letters, 3(5), 735-737. doi:10.1021/ol0003937
Grotjahn, D. B., Incarvito, C. D., & Rheingold, A. L. (2001). Combined Effects of Metal and Ligand Capable of Accepting a Proton or Hydrogen Bond Catalyze Anti-Markovnikov Hydration of Terminal Alkynes. Angewandte Chemie, 113(20), 4002-4005. doi:10.1002/1521-3757(20011015)113:20<4002::aid-ange4002>3.0.co;2-r
Grotjahn, D. B., Incarvito, C. D., & Rheingold, A. L. (2001). Combined Effects of Metal and Ligand Capable of Accepting a Proton or Hydrogen Bond Catalyze Anti-Markovnikov Hydration of Terminal Alkynes. Angewandte Chemie International Edition, 40(20), 3884-3887. doi:10.1002/1521-3773(20011015)40:20<3884::aid-anie3884>3.0.co;2-7
Alvarez, P., Bassetti, M., Gimeno, J., & Mancini, G. (2001). Hydration of terminal alkynes to aldehydes in aqueous micellar solutions by ruthenium(II) catalysis; first anti-Markovnikov addition of water to propargylic alcohols. Tetrahedron Letters, 42(48), 8467-8470. doi:10.1016/s0040-4039(01)01841-x
Tokunaga, M., & Wakatsuki, Y. (1998). Die erste Anti-Markownikow-Hydratisierung terminaler Alkine: Ruthenium(II)/ Phosphan-katalysierte Bildung von Aldehyden. Angewandte Chemie, 110(20), 3024-3027. doi:10.1002/(sici)1521-3757(19981016)110:20<3024::aid-ange3024>3.0.co;2-0
Tokunaga, M., & Wakatsuki, Y. (1998). The First Anti-Markovnikov Hydration of Terminal Alkynes: Formation of Aldehydes Catalyzed by a Ruthenium(II)/Phosphane Mixture. Angewandte Chemie International Edition, 37(20), 2867-2869. doi:10.1002/(sici)1521-3773(19981102)37:20<2867::aid-anie2867>3.0.co;2-e
Bruneau, C., & Dixneuf, P. H. (1997). Selective transformations of alkynes with ruthenium catalysts. Chemical Communications, (6), 507-512. doi:10.1039/a604112d
Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2012). Iron-Catalysed Markovnikov Hydrothiolation of Styrenes. Advanced Synthesis & Catalysis, 354(4), 678-687. doi:10.1002/adsc.201100731
Coulombel, L., Grau, F., Weïwer, M., Favier, I., Chaminade, X., Heumann, A., … Duñach, E. (2008). LewisSuper‐Acid Catalyzed Cyclizations: A New Route to Fragrance Compounds. Chemistry & Biodiversity, 5(6), 1070-1082. doi:10.1002/cbdv.200890086
Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2010). Iron-Catalysed Regio- and Stereoselective Head-to-Tail Dimerisation of Styrenes. Advanced Synthesis & Catalysis, 352(10), 1571-1576. doi:10.1002/adsc.201000096
Kohno, K., Nakagawa, K., Yahagi, T., Choi, J.-C., Yasuda, H., & Sakakura, T. (2009). Fe(OTf)3-Catalyzed Addition of sp C−H Bonds to Olefins. Journal of the American Chemical Society, 131(8), 2784-2785. doi:10.1021/ja8090593
Correa, A., García Mancheño, O., & Bolm, C. (2008). Iron-catalysed carbon–heteroatom and heteroatom–heteroatom bond forming processes. Chemical Society Reviews, 37(6), 1108. doi:10.1039/b801794h
Enthaler, S., Junge, K., & Beller, M. (2008). Eisenkatalyse – ein nachhaltiges Prinzip mit Perspektive? Angewandte Chemie, 120(18), 3363-3367. doi:10.1002/ange.200800012
Enthaler, S., Junge, K., & Beller, M. (2008). Sustainable Metal Catalysis with Iron: From Rust to a Rising Star? Angewandte Chemie International Edition, 47(18), 3317-3321. doi:10.1002/anie.200800012
Bolm, C., Legros, J., Le Paih, J., & Zani, L. (2004). Iron-Catalyzed Reactions in Organic Synthesis. Chemical Reviews, 104(12), 6217-6254. doi:10.1021/cr040664h
Antoniotti, S., Dalla, V., & Duñach, E. (2010). Metal Triflimidates: Better than Metal Triflates as Catalysts in Organic Synthesis-The Effect of a Highly Delocalized Counteranion. Angewandte Chemie International Edition, 49(43), 7860-7888. doi:10.1002/anie.200906407
Nakamura, Y., Maki, T., Wang, X., Ishihara, K., & Yamamoto, H. (2006). Iron(III)–Zirconium(IV) Combined Salt Immobilized onN-(Polystyrylbutyl)pyridinium Triflylimide as a Reusable Catalyst for a Dehydrative Esterification Reaction. Advanced Synthesis & Catalysis, 348(12-13), 1505-1510. doi:10.1002/adsc.200606126
Mathieu, B., & Ghosez, L. (2002). Trimethylsilyl bis(trifluoromethanesulfonyl)imide as a tolerant and environmentally benign Lewis acid catalyst of the Diels–Alder reaction. Tetrahedron, 58(41), 8219-8226. doi:10.1016/s0040-4020(02)00971-7
Nie, J., Kobayashi, H., & Sonoda, T. (1997). Copper(II) bis((trifluoromethyl) sulfonyl) amide. A novel Lewis acid catalyst in Diels-Alder reactions of cyclopentadiene with methyl vinyl ketone. Catalysis Today, 36(1), 81-84. doi:10.1016/s0920-5861(96)00199-x
Wu, X.-F., Bezier, D., & Darcel, C. (2009). Development of the First Iron Chloride-Catalyzed Hydration of Terminal Alkynes. Advanced Synthesis & Catalysis, 351(3), 367-370. doi:10.1002/adsc.200800666
Miranda, P. O., Díaz, D. D., Padrón, J. I., Ramírez, M. A., & Martín, V. S. (2005). Fe(III) Halides as Effective Catalysts in Carbon−Carbon Bond Formation: Synthesis of 1,5-Dihalo-1,4-dienes, α,β-Unsaturated Ketones, and Cyclic Ethers. The Journal of Organic Chemistry, 70(1), 57-62. doi:10.1021/jo048410j
Pierre Damiano, J., & Postel, M. (1996). FeCl3H2O: a specific system for arylacetylene hydration. Journal of Organometallic Chemistry, 522(2), 303-305. doi:10.1016/0022-328x(96)06294-8
(s. f.). doi:10.1021/ol047509
Cahiez, G., Chaboche, C., Mahuteau-Betzer, F., & Ahr, M. (2005). Iron-Catalyzed Homo-Coupling of Simple and Functionalized Arylmagnesium Reagents. Organic Letters, 7(10), 1943-1946. doi:10.1021/ol050340v
Rao, C. B., Rao, D. C., Babu, D. C., & Venkateswarlu, Y. (2010). Retro-Claisen Condensation with FeIII as Catalyst under Solvent-Free Conditions. European Journal of Organic Chemistry, 2010(15), 2855-2859. doi:10.1002/ejoc.201000140
Biswas, S., Maiti, S., & Jana, U. (2010). An Efficient Iron-Catalyzed Carbon-Carbon Single-Bond Cleavage via Retro-Claisen Condensation: A Mild and Convenient Approach to Synthesize a Variety of Esters or Ketones. European Journal of Organic Chemistry, 2010(15), 2861-2866. doi:10.1002/ejoc.201000128
Kook, C. S., Reed, M. F., & Digenis, G. A. (1975). Preparation of fluorine-18-labeled haloperidol. Journal of Medicinal Chemistry, 18(5), 533-535. doi:10.1021/jm00239a023
(s. f.). doi:10.1021/ol061174
Dang, T. T., Boeck, F., & Hintermann, L. (2011). Hidden Brønsted Acid Catalysis: Pathways of Accidental or Deliberate Generation of Triflic Acid from Metal Triflates. The Journal of Organic Chemistry, 76(22), 9353-9361. doi:10.1021/jo201631x
[-]