- -

Nanosized vanadium, tungsten and molybdenum oxide clusters grown in porous chitosan microspheres as promising hybrid materials for selective alcohol oxidation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nanosized vanadium, tungsten and molybdenum oxide clusters grown in porous chitosan microspheres as promising hybrid materials for selective alcohol oxidation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author El Kadib, Abdelkrim es_ES
dc.contributor.author Primo Arnau, Ana María es_ES
dc.contributor.author Molvinger, Karine es_ES
dc.contributor.author Bousmina, Mosto es_ES
dc.contributor.author Brunel, Daniel es_ES
dc.date.accessioned 2013-11-19T13:08:28Z
dc.date.issued 2011-07-04
dc.identifier.issn 0947-6539
dc.identifier.uri http://hdl.handle.net/10251/33744
dc.description.abstract The ability of chitosan biopolymer to coordinate vanadium, tungsten and molybdenum metallic species and to control their mineralisation growth provides a new family of surface-reactive organic-inorganic hybrid microspheres. Drying the resulting materials under supercritical conditions allowed the gel network dispersion to be retained, thereby leading to a macroporous catalyst with surface areas ranging from 253 to 278 m2 g-1. On account of the open framework structure of these microspheres, the redox species entangled within the fibrillar network of the polysaccharide aerogels were found to be active, selective and reusable catalysts for cinamylalcohol oxidations. es_ES
dc.description.sponsorship This work was supported by the Hassan II Academy of Science, Innovation and Research (Morocco). We are grateful to Dr. Claude Guillmon for XPS analysis and to Hassan Hafidi (IT Manager) for his technical assistance. en_EN
dc.format.extent 7 es_ES
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Alcohols es_ES
dc.subject Chitosan es_ES
dc.subject Nanostructures es_ES
dc.subject Organic-inorganic hybrid composites es_ES
dc.subject Oxidation es_ES
dc.title Nanosized vanadium, tungsten and molybdenum oxide clusters grown in porous chitosan microspheres as promising hybrid materials for selective alcohol oxidation es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/chem.201003740
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation El Kadib, A.; Primo Arnau, AM.; Molvinger, K.; Bousmina, M.; Brunel, D. (2011). Nanosized vanadium, tungsten and molybdenum oxide clusters grown in porous chitosan microspheres as promising hybrid materials for selective alcohol oxidation. Chemistry - A European Journal. 17:7940-7946. doi:10.1002/chem.201003740 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/chem.201003740 es_ES
dc.description.upvformatpinicio 7940 es_ES
dc.description.upvformatpfin 7946 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.relation.senia 218846
dc.contributor.funder Académie Hassan II des Sciences et Techniques es_ES
dc.description.references Burgos-Asperilla, L., Darder, M., Aranda, P., Vázquez, L., Vázquez, M., & Ruiz-Hitzky, E. (2007). Novel magnetic organic–inorganic nanostructured materials. Journal of Materials Chemistry, 17(40), 4233. doi:10.1039/b706011d es_ES
dc.description.references Gomez-Romero, P. (2001). Hybrid Organic-Inorganic Materials—In Search of Synergic Activity. Advanced Materials, 13(3), 163-174. doi:10.1002/1521-4095(200102)13:3<163::aid-adma163>3.0.co;2-u es_ES
dc.description.references Fernandez-Saavedra, R., Aranda, P., Carrado, K., Sandi, G., Seifert, S., & Ruiz-Hitzky, E. (2009). Template Synthesis of Nanostructured Carbonaceous Materials for Application in Electrochemical Devices. Current Nanoscience, 5(4), 506-513. doi:10.2174/157341309789378168 es_ES
dc.description.references Coradin, T., Bah, S., & Livage, J. (2004). Gelatine/silicate interactions: from nanoparticles to composite gels. Colloids and Surfaces B: Biointerfaces, 35(1), 53-58. doi:10.1016/j.colsurfb.2004.02.008 es_ES
dc.description.references Sanchez, C., Soler-Illia, G. J. de A. A., Ribot, F., Lalot, T., Mayer, C. R., & Cabuil, V. (2001). Designed Hybrid Organic−Inorganic Nanocomposites from Functional Nanobuilding Blocks. Chemistry of Materials, 13(10), 3061-3083. doi:10.1021/cm011061e es_ES
dc.description.references Shea, K. J., & Loy, D. A. (2001). Bridged Polysilsesquioxanes. Molecular-Engineered Hybrid Organic−Inorganic Materials. Chemistry of Materials, 13(10), 3306-3319. doi:10.1021/cm011074s es_ES
dc.description.references Corriu, R., & Trong Anh, N. (2009). Molecular Chemistry of Sol-Gel Derived Nanomaterials. doi:10.1002/9780470742778 es_ES
dc.description.references Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 es_ES
dc.description.references Yanagisawa, T., Shimizu, T., Kuroda, K., & Kato, C. (1990). The Preparation of Alkyltriinethylaininonium–Kaneinite Complexes and Their Conversion to Microporous Materials. Bulletin of the Chemical Society of Japan, 63(4), 988-992. doi:10.1246/bcsj.63.988 es_ES
dc.description.references For selected examples: see es_ES
dc.description.references Anwander, R. (2001). SOMC@PMS. Surface Organometallic Chemistry at Periodic Mesoporous Silica†. Chemistry of Materials, 13(12), 4419-4438. doi:10.1021/cm0111534 es_ES
dc.description.references Ravasio, N., Zaccheria, F., Guidotti, M., & Psaro, R. (2004). Mono- and Bifunctional Heterogeneous Catalytic Transformation of Terpenes and Terpenoids. Topics in Catalysis, 27(1-4), 157-168. doi:10.1023/b:toca.0000013550.28170.6a es_ES
dc.description.references Maschmeyer, T., Rey, F., Sankar, G., & Thomas, J. M. (1995). Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature, 378(6553), 159-162. doi:10.1038/378159a0 es_ES
dc.description.references Corma, A., & García, H. (2002). Lewis Acids as Catalysts in Oxidation Reactions:  From Homogeneous to Heterogeneous Systems. Chemical Reviews, 102(10), 3837-3892. doi:10.1021/cr010333u es_ES
dc.description.references Chen, K., Bell, A. T., & Iglesia, E. (2000). Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum, and Tungsten Oxides. The Journal of Physical Chemistry B, 104(6), 1292-1299. doi:10.1021/jp9933875 es_ES
dc.description.references Hutchings, G. J. (2009). Heterogeneous catalysts—discovery and design. J. Mater. Chem., 19(9), 1222-1235. doi:10.1039/b812300b es_ES
dc.description.references Muylaert, I., & Van Der Voort, P. (2009). Supported vanadium oxide in heterogeneous catalysis: elucidating the structure–activity relationship with spectroscopy. Physical Chemistry Chemical Physics, 11(16), 2826. doi:10.1039/b819808j es_ES
dc.description.references Carn, F., Durupthy, O., Fayolle, B., Coradin, T., Mosser, G., Schmutz, M., … Steunou, N. (2010). Assembling Vanadium(V) Oxide and Gelatin into Novel Bionanocomposites with Unexpected Rubber-like Properties. Chemistry of Materials, 22(2), 398-408. doi:10.1021/cm902836g es_ES
dc.description.references Pereira, C., Pereira, A. M., Quaresma, P., Tavares, P. B., Pereira, E., Araújo, J. P., & Freire, C. (2010). Superparamagnetic γ-Fe2O3@SiO2 nanoparticles: a novel support for the immobilization of [VO(acac)2]. Dalton Transactions, 39(11), 2842. doi:10.1039/b920853d es_ES
dc.description.references Hess, C., Hoefelmeyer, J. D., & Tilley, T. D. (2004). Spectroscopic Characterization of Highly Dispersed Vanadia Supported on SBA-15. The Journal of Physical Chemistry B, 108(28), 9703-9709. doi:10.1021/jp037714r es_ES
dc.description.references Carn, F., Steunou, N., Djabourov, M., Coradin, T., Ribot, F., & Livage, J. (2008). First example of biopolymer–polyoxometalate complex coacervation in gelatin–decavanadate mixtures. Soft Matter, 4(4), 735. doi:10.1039/b719216a es_ES
dc.description.references Chen, W., Xu, Q., Hu, Y. S., Mai, L. Q., & Zhu, Q. Y. (2002). Effect of modification by poly(ethylene oxide) on the reversibility of insertion/extraction of Li+ ion in V2O5 xerogel films. Journal of Materials Chemistry, 12(6), 1926-1929. doi:10.1039/b203056j es_ES
dc.description.references Malta, M., Louarn, G., Errien, N., & Torresi, R. M. (2006). Redox behavior of nanohybrid material with defined morphology: Vanadium oxide nanotubes intercalated with polyaniline. Journal of Power Sources, 156(2), 533-540. doi:10.1016/j.jpowsour.2005.05.044 es_ES
dc.description.references Chen, W., Mai, L., Qi, Y., & Dai, Y. (2006). One-dimensional nanomaterials of vanadium and molybdenum oxides. Journal of Physics and Chemistry of Solids, 67(5-6), 896-902. doi:10.1016/j.jpcs.2006.01.074 es_ES
dc.description.references Willinger, M.-G., Neri, G., Rauwel, E., Bonavita, A., Micali, G., & Pinna, N. (2008). Vanadium Oxide Sensing Layer Grown on Carbon Nanotubes by a New Atomic Layer Deposition Process. Nano Letters, 8(12), 4201-4204. doi:10.1021/nl801785b es_ES
dc.description.references White, R. J., Budarin, V. L., & Clark, J. H. (2008). Tuneable Mesoporous Materials from α-D-Polysaccharides. ChemSusChem, 1(5), 408-411. doi:10.1002/cssc.200800012 es_ES
dc.description.references White, R. J., Budarin, V., Luque, R., Clark, J. H., & Macquarrie, D. J. (2009). Tuneable porous carbonaceous materials from renewable resources. Chemical Society Reviews, 38(12), 3401. doi:10.1039/b822668g es_ES
dc.description.references Hu, B., Wang, K., Wu, L., Yu, S.-H., Antonietti, M., & Titirici, M.-M. (2010). Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Advanced Materials, 22(7), 813-828. doi:10.1002/adma.200902812 es_ES
dc.description.references Dujardin, E., Blaseby, M., & Mann, S. (2003). Synthesis of mesoporous silica by sol–gel mineralisation of cellulose nanorod nematic suspensions. Journal of Materials Chemistry, 13(4), 696-699. doi:10.1039/b212689c es_ES
dc.description.references Guibal, E. (2005). Heterogeneous catalysis on chitosan-based materials: a review. Progress in Polymer Science, 30(1), 71-109. doi:10.1016/j.progpolymsci.2004.12.001 es_ES
dc.description.references Macquarrie, D. J., & Hardy, J. J. E. (2005). Applications of Functionalized Chitosan in Catalysis†. Industrial & Engineering Chemistry Research, 44(23), 8499-8520. doi:10.1021/ie050007v es_ES
dc.description.references Gandini, A. (2008). Polymers from Renewable Resources: A Challenge for the Future of Macromolecular Materials. Macromolecules, 41(24), 9491-9504. doi:10.1021/ma801735u es_ES
dc.description.references Eissen, M., Metzger, J. O., Schmidt, E., & Schneidewind, U. (2002). 10 Jahre nach „Rio“ - Konzepte zum Beitrag der Chemie zu einer nachhaltigen Entwicklung. Angewandte Chemie, 114(3), 402-425. doi:10.1002/1521-3757(20020201)114:3<402::aid-ange402>3.0.co;2-d es_ES
dc.description.references Eissen, M., Metzger, J. O., Schmidt, E., & Schneidewind, U. (2002). 10 Years after Rio-Concepts on the Contribution of Chemistry to a Sustainable Development. Angewandte Chemie International Edition, 41(3), 414-436. doi:10.1002/1521-3773(20020201)41:3<414::aid-anie414>3.0.co;2-n es_ES
dc.description.references Lligadas, G., Ronda, J. C., Galià, M., & Cádiz, V. (2010). Plant Oils as Platform Chemicals for Polyurethane Synthesis: Current State-of-the-Art. Biomacromolecules, 11(11), 2825-2835. doi:10.1021/bm100839x es_ES
dc.description.references Cole-Hamilton, D. J. (2010). Polyethylen aus der Natur. Angewandte Chemie, 122(46), 8744-8746. doi:10.1002/ange.201002593 es_ES
dc.description.references Cole-Hamilton, D. J. (2010). Nature’s Polyethylene. Angewandte Chemie International Edition, 49(46), 8564-8566. doi:10.1002/anie.201002593 es_ES
dc.description.references El Kadib, A., Katir, N., Marcotte, N., Molvinger, K., Castel, A., Rivière, P., & Brunel, D. (2009). Nanocomposites from natural templates based on fatty compound-functionalised siloxanes. Journal of Materials Chemistry, 19(33), 6004. doi:10.1039/b906448f es_ES
dc.description.references Ruiz-Hitzky, E., Darder, M., Aranda, P., & Ariga, K. (2010). Advances in Biomimetic and Nanostructured Biohybrid Materials. Advanced Materials, 22(3), 323-336. doi:10.1002/adma.200901134 es_ES
dc.description.references Dujardin, E., & Mann, S. (2002). Bio-inspired Materials Chemistry. Advanced Materials, 14(11), 775. doi:10.1002/1521-4095(20020605)14:11<775::aid-adma775>3.0.co;2-0 es_ES
dc.description.references Sellinger, A., Weiss, P. M., Nguyen, A., Lu, Y., Assink, R. A., Gong, W., & Brinker, C. J. (1998). Continuous self-assembly of organic–inorganic nanocomposite coatings that mimic nacre. Nature, 394(6690), 256-260. doi:10.1038/28354 es_ES
dc.description.references Valentin, R., Molvinger, K., Quignard, F., & Brunel, D. (2003). Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry. New Journal of Chemistry, 27(12), 1690. doi:10.1039/b310109f es_ES
dc.description.references Molvinger, K., Quignard, F., Brunel, D., Boissière, M., & Devoisselle, J.-M. (2004). Porous Chitosan-Silica Hybrid Microspheres as a Potential Catalyst. Chemistry of Materials, 16(17), 3367-3372. doi:10.1021/cm0353299 es_ES
dc.description.references Kadib, A. E., Molvinger, K., Guimon, C., Quignard, F., & Brunel, D. (2008). Design of Stable Nanoporous Hybrid Chitosan/Titania as Cooperative Bifunctional Catalysts. Chemistry of Materials, 20(6), 2198-2204. doi:10.1021/cm800080s es_ES
dc.description.references Kadib, A. E., Molvinger, K., Bousmina, M., & Brunel, D. (2010). Improving Catalytic Activity by Synergic Effect between Base and Acid Pairs in Hierarchically Porous Chitosan@Titania Nanoreactors. Organic Letters, 12(5), 948-951. doi:10.1021/ol9029319 es_ES
dc.description.references Kadib, A. E., Molvinger, K., Bousmina, M., & Brunel, D. (2010). Decoration of chitosan microspheres with inorganic oxide clusters: Rational design of hierarchically porous, stable and cooperative acid–base nanoreactors. Journal of Catalysis, 273(2), 147-155. doi:10.1016/j.jcat.2010.05.010 es_ES
dc.description.references Kadib, A. E., Molvinger, K., Cacciaguerra, T., Bousmina, M., & Brunel, D. (2011). Chitosan templated synthesis of porous metal oxide microspheres with filamentary nanostructures. Microporous and Mesoporous Materials, 142(1), 301-307. doi:10.1016/j.micromeso.2010.12.012 es_ES
dc.description.references Review: es_ES
dc.description.references Mallat, T., & Baiker, A. (2004). Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts. Chemical Reviews, 104(6), 3037-3058. doi:10.1021/cr0200116 es_ES
dc.description.references De Vos, D. E., Dams, M., Sels, B. F., & Jacobs, P. A. (2002). Ordered Mesoporous and Microporous Molecular Sieves Functionalized with Transition Metal Complexes as Catalysts for Selective Organic Transformations. Chemical Reviews, 102(10), 3615-3640. doi:10.1021/cr010368u es_ES
dc.description.references For selected examples see: es_ES
dc.description.references Karimi, B., Abedi, S., Clark, J. H., & Budarin, V. (2006). Highly Efficient Aerobic Oxidation of Alcohols Using a Recoverable Catalyst: The Role of Mesoporous Channels of SBA-15 in Stabilizing Palladium Nanoparticles. Angewandte Chemie, 118(29), 4894-4897. doi:10.1002/ange.200504359 es_ES
dc.description.references Karimi, B., Abedi, S., Clark, J. H., & Budarin, V. (2006). Highly Efficient Aerobic Oxidation of Alcohols Using a Recoverable Catalyst: The Role of Mesoporous Channels of SBA-15 in Stabilizing Palladium Nanoparticles. Angewandte Chemie International Edition, 45(29), 4776-4779. doi:10.1002/anie.200504359 es_ES
dc.description.references Mori, K., Yamaguchi, K., Hara, T., Mizugaki, T., Ebitani, K., & Kaneda, K. (2002). Controlled Synthesis of Hydroxyapatite-Supported Palladium Complexes as Highly Efficient Heterogeneous Catalysts. Journal of the American Chemical Society, 124(39), 11572-11573. doi:10.1021/ja020444q es_ES
dc.description.references Mori, K., Hara, T., Mizugaki, T., Ebitani, K., & Kaneda, K. (2004). Hydroxyapatite-Supported Palladium Nanoclusters:  A Highly Active Heterogeneous Catalyst for Selective Oxidation of Alcohols by Use of Molecular Oxygen. Journal of the American Chemical Society, 126(34), 10657-10666. doi:10.1021/ja0488683 es_ES
dc.description.references Yamaguchi, K., & Mizuno, N. (2002). Angewandte Chemie, 114(23), 4720-4724. doi:10.1002/1521-3757(20021202)114:23<4720::aid-ange4720>3.0.co;2-p es_ES
dc.description.references Yamaguchi, K., & Mizuno, N. (2002). Supported Ruthenium Catalyst for the Heterogeneous Oxidation of Alcohols with Molecular Oxygen. Angewandte Chemie International Edition, 41(23), 4538-4542. doi:10.1002/1521-3773(20021202)41:23<4538::aid-anie4538>3.0.co;2-6 es_ES
dc.description.references Enache, D. I., Edwards, J. K., Landon, P., Solsona-Espriu, B., Carley, A. F., Herzing, A. A., … Hutchings, G. J. (2006). Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts. Science, 311(5759), 362-365. doi:10.1126/science.1120560 es_ES
dc.description.references Abad, A., Concepción, P., Corma, A., & García, H. (2005). A Collaborative Effect between Gold and a Support Induces the Selective Oxidation of Alcohols. Angewandte Chemie, 117(26), 4134-4137. doi:10.1002/ange.200500382 es_ES
dc.description.references Abad, A., Concepción, P., Corma, A., & García, H. (2005). A Collaborative Effect between Gold and a Support Induces the Selective Oxidation of Alcohols. Angewandte Chemie International Edition, 44(26), 4066-4069. doi:10.1002/anie.200500382 es_ES
dc.description.references Comotti, M., Della Pina, C., Matarrese, R., & Rossi, M. (2004). The Catalytic Activity of ?Naked? Gold Particles. Angewandte Chemie, 116(43), 5936-5939. doi:10.1002/ange.200460446 es_ES
dc.description.references Comotti, M., Della Pina, C., Matarrese, R., & Rossi, M. (2004). The Catalytic Activity of ?Naked? Gold Particles. Angewandte Chemie International Edition, 43(43), 5812-5815. doi:10.1002/anie.200460446 es_ES
dc.description.references HOU, W., DEHM, N., & SCOTT, R. (2008). Alcohol oxidations in aqueous solutions using Au, Pd, and bimetallic AuPd nanoparticle catalysts. Journal of Catalysis, 253(1), 22-27. doi:10.1016/j.jcat.2007.10.025 es_ES
dc.description.references Miyamura, H., Matsubara, R., Miyazaki, Y., & Kobayashi, S. (2007). Aerobic Oxidation of Alcohols at Room Temperature and Atmospheric Conditions Catalyzed by Reusable Gold Nanoclusters Stabilized by the Benzene Rings of Polystyrene Derivatives. Angewandte Chemie, 119(22), 4229-4232. doi:10.1002/ange.200700080 es_ES
dc.description.references Miyamura, H., Matsubara, R., Miyazaki, Y., & Kobayashi, S. (2007). Aerobic Oxidation of Alcohols at Room Temperature and Atmospheric Conditions Catalyzed by Reusable Gold Nanoclusters Stabilized by the Benzene Rings of Polystyrene Derivatives. Angewandte Chemie International Edition, 46(22), 4151-4154. doi:10.1002/anie.200700080 es_ES
dc.description.references Miyamura, H., Matsubara, R., & Kobayashi, S. (2008). Gold–platinum bimetallic clusters for aerobic oxidation of alcohols under ambient conditions. Chemical Communications, (17), 2031. doi:10.1039/b800657a es_ES
dc.description.references Chan-Thaw, C. E., Villa, A., Katekomol, P., Su, D., Thomas, A., & Prati, L. (2010). Covalent Triazine Framework as Catalytic Support for Liquid Phase Reaction. Nano Letters, 10(2), 537-541. doi:10.1021/nl904082k es_ES
dc.description.references Chan-Thaw, C. E., Villa, A., Prati, L., & Thomas, A. (2010). Triazine-Based Polymers as Nanostructured Supports for the Liquid-Phase Oxidation of Alcohols. Chemistry - A European Journal, 17(3), 1052-1057. doi:10.1002/chem.201000675 es_ES
dc.description.references Karimi, B., Ghoreishi-Nezhad, M., & Clark, J. H. (2005). Selective Oxidation of Sulfides to Sulfoxides Using 30% Hydrogen Peroxide Catalyzed with a Recoverable Silica-Based Tungstate Interphase Catalyst. Organic Letters, 7(4), 625-628. doi:10.1021/ol047635d es_ES
dc.description.references Delpeux, S., Beguin, F., Benoit, R., Erre, R., Manolova, N., & Rashkov, I. (1998). Fullerene core star-like polymers—1. Preparation from fullerenes and monoazidopolyethers. European Polymer Journal, 34(7), 905-915. doi:10.1016/s0014-3057(97)00225-5 es_ES
dc.description.references Kistler, S. S. (1932). Coherent Expanded-Aerogels. The Journal of Physical Chemistry, 36(1), 52-64. doi:10.1021/j150331a003 es_ES
dc.description.references Pierre, A. C., & Pajonk, G. M. (2002). Chemistry of Aerogels and Their Applications. Chemical Reviews, 102(11), 4243-4266. doi:10.1021/cr0101306 es_ES
dc.description.references Quignard, F., Valentin, R., & Di Renzo, F. (2008). Aerogel materials from marine polysaccharides. New Journal of Chemistry, 32(8), 1300. doi:10.1039/b808218a es_ES
dc.description.references The stability of chitosan under acidic and basic conditions has been discussed in ref. [15a]. Immersion of native chitosan beads in acetic acid (0.1 n) resulted in solubilisation of the gel network. es_ES
dc.description.references Barringer, E. A., & Bowen, H. K. (1985). High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties. Langmuir, 1(4), 414-420. doi:10.1021/la00064a005 es_ES
dc.description.references Sanchez, C., Livage, J., Henry, M., & Babonneau, F. (1988). Chemical modification of alkoxide precursors. Journal of Non-Crystalline Solids, 100(1-3), 65-76. doi:10.1016/0022-3093(88)90007-5 es_ES
dc.description.references Leaustic, A., Babonneau, F., & Livage, J. (1989). Structural investigation of the hydrolysis-condensation process of titanium alkoxides Ti(OR)4 (OR = OPr-iso, OEt) modified by acetylacetone. 1. Study of the alkoxide modification. Chemistry of Materials, 1(2), 240-247. doi:10.1021/cm00002a015 es_ES
dc.description.references Guari, Y., Larionova, J., Molvinger, K., Folch, B., & Guérin, C. (2006). Magnetic water-soluble cyano-bridged metal coordination nano-polymers. Chem. Commun., (24), 2613-2615. doi:10.1039/b602460b es_ES
dc.description.references Larionova, J., Salmon, L., Guari, Y., Tokarev, A., Molvinger, K., Molnár, G., & Bousseksou, A. (2008). Towards the Ultimate Size Limit of the Memory Effect in Spin-Crossover Solids. Angewandte Chemie, 120(43), 8360-8364. doi:10.1002/ange.200802906 es_ES
dc.description.references Larionova, J., Salmon, L., Guari, Y., Tokarev, A., Molvinger, K., Molnár, G., & Bousseksou, A. (2008). Towards the Ultimate Size Limit of the Memory Effect in Spin-Crossover Solids. Angewandte Chemie International Edition, 47(43), 8236-8240. doi:10.1002/anie.200802906 es_ES
dc.description.references Guari, Y., Larionova, J., Corti, M., Lascialfari, A., Marinone, M., Poletti, G., … Guérin, C. (2008). Cyano-bridged coordination polymer nanoparticles with high nuclear relaxivity: toward new contrast agents for MRI. Dalton Transactions, (28), 3658. doi:10.1039/b808221a es_ES
dc.description.references Primo, A., & Quignard, F. (2010). Chitosan as efficient porous support for dispersion of highly active gold nanoparticles: design of hybrid catalyst for carbon–carbon bond formation. Chemical Communications, 46(30), 5593. doi:10.1039/c0cc01137a es_ES
dc.description.references Darder, M., López-Blanco, M., Aranda, P., Aznar, A. J., Bravo, J., & Ruiz-Hitzky, E. (2006). Microfibrous Chitosan−Sepiolite Nanocomposites. Chemistry of Materials, 18(6), 1602-1610. doi:10.1021/cm0523642 es_ES
dc.description.references Kang, E. (1998). Polyaniline: A polymer with many interesting intrinsic redox states. Progress in Polymer Science, 23(2), 277-324. doi:10.1016/s0079-6700(97)00030-0 es_ES
dc.description.references Dambies, L., Guimon, C., Yiacoumi, S., & Guibal, E. (2001). Characterization of metal ion interactions with chitosan by X-ray photoelectron spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177(2-3), 203-214. doi:10.1016/s0927-7757(00)00678-6 es_ES
dc.description.references Wan, D., Yuan, S., Li, G. L., Neoh, K. G., & Kang, E. T. (2010). Glucose Biosensor from Covalent Immobilization of Chitosan-Coupled Carbon Nanotubes on Polyaniline-Modified Gold Electrode. ACS Applied Materials & Interfaces, 2(11), 3083-3091. doi:10.1021/am100591t es_ES
dc.description.references Muylaert, I., Borgers, M., Bruneel, E., Schaubroeck, J., Verpoort, F., & Van Der Voort, P. (2008). Ultra stable ordered mesoporous phenol/formaldehyde polymers as a heterogeneous support for vanadium oxide. Chemical Communications, (37), 4475. doi:10.1039/b808566h es_ES
dc.description.references Schraml-Marth, M., Wokaun, A., Pohl, M., & Krauss, H.-L. (1991). Spectroscopic investigation of the structure of silica-supported vanadium oxide catalysts at submonolayer coverages. Journal of the Chemical Society, Faraday Transactions, 87(16), 2635. doi:10.1039/ft9918702635 es_ES
dc.description.references Sueoka, S., Mitsudome, T., Mizugaki, T., Jitsukawa, K., & Kaneda, K. (2010). Supported monomeric vanadium catalyst for dehydration of amides to form nitriles. Chemical Communications, 46(43), 8243. doi:10.1039/c0cc02412k es_ES
dc.description.references Khatri, P. K., Singh, B., Jain, S. L., Sain, B., & Sinha, A. K. (2011). Cyclotriphosphazene grafted silica: a novel support for immobilizing the oxo-vanadium Schiff base moieties for hydroxylation of benzene. Chem. Commun., 47(5), 1610-1612. doi:10.1039/c0cc01941k es_ES
dc.description.references El Kadib, A., Chimenton, R., Sachse, A., Fajula, F., Galarneau, A., & Coq, B. (2009). Functionalized Inorganic Monolithic Microreactors for High Productivity in Fine Chemicals Catalytic Synthesis. Angewandte Chemie, 121(27), 5069-5072. doi:10.1002/ange.200805580 es_ES
dc.description.references El Kadib, A., Chimenton, R., Sachse, A., Fajula, F., Galarneau, A., & Coq, B. (2009). Functionalized Inorganic Monolithic Microreactors for High Productivity in Fine Chemicals Catalytic Synthesis. Angewandte Chemie International Edition, 48(27), 4969-4972. doi:10.1002/anie.200805580 es_ES
dc.description.references Aguado, S., Canivet, J., & Farrusseng, D. (2010). Facile shaping of an imidazolate-based MOF on ceramic beads for adsorption and catalytic applications. Chemical Communications, 46(42), 7999. doi:10.1039/c0cc02045a es_ES
dc.description.references Sorokin, A. B., Quignard, F., Valentin, R., & Mangematin, S. (2006). Chitosan supported phthalocyanine complexes: Bifunctional catalysts with basic and oxidation active sites. Applied Catalysis A: General, 309(2), 162-168. doi:10.1016/j.apcata.2006.03.060 es_ES
dc.description.references Guo, C.-C., Huang, G., Zhang, X.-B., & Guo, D.-C. (2003). Catalysis of chitosan-supported iron tetraphenylporphyrin for aerobic oxidation of cyclohexane in absence of reductants and solvents. Applied Catalysis A: General, 247(2), 261-267. doi:10.1016/s0926-860x(03)00108-x es_ES
dc.description.references Karimi, B., & Kabiri Esfahani, F. (2009). Gold nanoparticles supported on Cs2CO3 as recyclable catalyst system for selective aerobic oxidation of alcohols at room temperature. Chemical Communications, (37), 5555. doi:10.1039/b908964k es_ES
dc.description.references When monitoring the degradation of the materials used in catalysis by thermogravimetric analysis (TGA)/mass spectroscopy no product attributed to the oxidation of the support was observed. es_ES
dc.description.references Chitosan has been shown to be effective for adsorption and removal of vanadium tungsten and molybdenum from aqueous solutions: es_ES
dc.description.references Qian, S., Wang, H., Huang, G., Mo, S., & Wei, W. (2004). Studies of adsorption properties of crosslinked chitosan for vanadium(V), tungsten(VI). Journal of Applied Polymer Science, 92(3), 1584-1588. doi:10.1002/app.20102 es_ES
dc.description.references Kufelnicki, A., Lichawska, M. E., & Bodek, K. H. (2009). Interaction of microcrystalline chitosan (MCCh) with Mo(VI) in aqueous solution. Journal of Applied Polymer Science, 114(3), 1619-1625. doi:10.1002/app.30756 es_ES
dc.description.references Qian, S. H., Xue, A. F., Xiao, M., & Chen, H. (2006). Application of crosslinked chitosan in the analysis of ultratrace Mo(VI). Journal of Applied Polymer Science, 101(1), 432-435. doi:10.1002/app.23251 es_ES
dc.description.references Navarro, R., Guzmán, J., Saucedo, I., Revilla, J., & Guibal, E. (2003). Recovery of Metal Ions by Chitosan: Sorption Mechanisms and Influence of Metal Speciation. Macromolecular Bioscience, 3(10), 552-561. doi:10.1002/mabi.200300013 es_ES
dc.description.references Guzmán, J., Saucedo, I., Navarro, R., Revilla, J., & Guibal, E. (2002). Vanadium Interactions with Chitosan:  Influence of Polymer Protonation and Metal Speciation. Langmuir, 18(5), 1567-1573. doi:10.1021/la010802n es_ES
dc.description.references In some cases the fast re‐deposition of the leached active species back onto the support can result in a misconception about the result. So in the absence of an exhaustive study on this phenomenon the following results have to be carefully interpreted. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem