- -

Nanosized vanadium, tungsten and molybdenum oxide clusters grown in porous chitosan microspheres as promising hybrid materials for selective alcohol oxidation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nanosized vanadium, tungsten and molybdenum oxide clusters grown in porous chitosan microspheres as promising hybrid materials for selective alcohol oxidation

Mostrar el registro completo del ítem

El Kadib, A.; Primo Arnau, AM.; Molvinger, K.; Bousmina, M.; Brunel, D. (2011). Nanosized vanadium, tungsten and molybdenum oxide clusters grown in porous chitosan microspheres as promising hybrid materials for selective alcohol oxidation. Chemistry - A European Journal. 17:7940-7946. doi:10.1002/chem.201003740

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/33744

Ficheros en el ítem

Metadatos del ítem

Título: Nanosized vanadium, tungsten and molybdenum oxide clusters grown in porous chitosan microspheres as promising hybrid materials for selective alcohol oxidation
Autor: El Kadib, Abdelkrim Primo Arnau, Ana María Molvinger, Karine Bousmina, Mosto Brunel, Daniel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
The ability of chitosan biopolymer to coordinate vanadium, tungsten and molybdenum metallic species and to control their mineralisation growth provides a new family of surface-reactive organic-inorganic hybrid microspheres. ...[+]
Palabras clave: Alcohols , Chitosan , Nanostructures , Organic-inorganic hybrid composites , Oxidation
Derechos de uso: Cerrado
Fuente:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.201003740
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/chem.201003740
Agradecimientos:
This work was supported by the Hassan II Academy of Science, Innovation and Research (Morocco). We are grateful to Dr. Claude Guillmon for XPS analysis and to Hassan Hafidi (IT Manager) for his technical assistance.
Tipo: Artículo

References

Burgos-Asperilla, L., Darder, M., Aranda, P., Vázquez, L., Vázquez, M., & Ruiz-Hitzky, E. (2007). Novel magnetic organic–inorganic nanostructured materials. Journal of Materials Chemistry, 17(40), 4233. doi:10.1039/b706011d

Gomez-Romero, P. (2001). Hybrid Organic-Inorganic Materials—In Search of Synergic Activity. Advanced Materials, 13(3), 163-174. doi:10.1002/1521-4095(200102)13:3<163::aid-adma163>3.0.co;2-u

Fernandez-Saavedra, R., Aranda, P., Carrado, K., Sandi, G., Seifert, S., & Ruiz-Hitzky, E. (2009). Template Synthesis of Nanostructured Carbonaceous Materials for Application in Electrochemical Devices. Current Nanoscience, 5(4), 506-513. doi:10.2174/157341309789378168 [+]
Burgos-Asperilla, L., Darder, M., Aranda, P., Vázquez, L., Vázquez, M., & Ruiz-Hitzky, E. (2007). Novel magnetic organic–inorganic nanostructured materials. Journal of Materials Chemistry, 17(40), 4233. doi:10.1039/b706011d

Gomez-Romero, P. (2001). Hybrid Organic-Inorganic Materials—In Search of Synergic Activity. Advanced Materials, 13(3), 163-174. doi:10.1002/1521-4095(200102)13:3<163::aid-adma163>3.0.co;2-u

Fernandez-Saavedra, R., Aranda, P., Carrado, K., Sandi, G., Seifert, S., & Ruiz-Hitzky, E. (2009). Template Synthesis of Nanostructured Carbonaceous Materials for Application in Electrochemical Devices. Current Nanoscience, 5(4), 506-513. doi:10.2174/157341309789378168

Coradin, T., Bah, S., & Livage, J. (2004). Gelatine/silicate interactions: from nanoparticles to composite gels. Colloids and Surfaces B: Biointerfaces, 35(1), 53-58. doi:10.1016/j.colsurfb.2004.02.008

Sanchez, C., Soler-Illia, G. J. de A. A., Ribot, F., Lalot, T., Mayer, C. R., & Cabuil, V. (2001). Designed Hybrid Organic−Inorganic Nanocomposites from Functional Nanobuilding Blocks. Chemistry of Materials, 13(10), 3061-3083. doi:10.1021/cm011061e

Shea, K. J., & Loy, D. A. (2001). Bridged Polysilsesquioxanes. Molecular-Engineered Hybrid Organic−Inorganic Materials. Chemistry of Materials, 13(10), 3306-3319. doi:10.1021/cm011074s

Corriu, R., & Trong Anh, N. (2009). Molecular Chemistry of Sol-Gel Derived Nanomaterials. doi:10.1002/9780470742778

Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0

Yanagisawa, T., Shimizu, T., Kuroda, K., & Kato, C. (1990). The Preparation of Alkyltriinethylaininonium–Kaneinite Complexes and Their Conversion to Microporous Materials. Bulletin of the Chemical Society of Japan, 63(4), 988-992. doi:10.1246/bcsj.63.988

For selected examples: see

Anwander, R. (2001). SOMC@PMS. Surface Organometallic Chemistry at Periodic Mesoporous Silica†. Chemistry of Materials, 13(12), 4419-4438. doi:10.1021/cm0111534

Ravasio, N., Zaccheria, F., Guidotti, M., & Psaro, R. (2004). Mono- and Bifunctional Heterogeneous Catalytic Transformation of Terpenes and Terpenoids. Topics in Catalysis, 27(1-4), 157-168. doi:10.1023/b:toca.0000013550.28170.6a

Maschmeyer, T., Rey, F., Sankar, G., & Thomas, J. M. (1995). Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature, 378(6553), 159-162. doi:10.1038/378159a0

Corma, A., & García, H. (2002). Lewis Acids as Catalysts in Oxidation Reactions:  From Homogeneous to Heterogeneous Systems. Chemical Reviews, 102(10), 3837-3892. doi:10.1021/cr010333u

Chen, K., Bell, A. T., & Iglesia, E. (2000). Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum, and Tungsten Oxides. The Journal of Physical Chemistry B, 104(6), 1292-1299. doi:10.1021/jp9933875

Hutchings, G. J. (2009). Heterogeneous catalysts—discovery and design. J. Mater. Chem., 19(9), 1222-1235. doi:10.1039/b812300b

Muylaert, I., & Van Der Voort, P. (2009). Supported vanadium oxide in heterogeneous catalysis: elucidating the structure–activity relationship with spectroscopy. Physical Chemistry Chemical Physics, 11(16), 2826. doi:10.1039/b819808j

Carn, F., Durupthy, O., Fayolle, B., Coradin, T., Mosser, G., Schmutz, M., … Steunou, N. (2010). Assembling Vanadium(V) Oxide and Gelatin into Novel Bionanocomposites with Unexpected Rubber-like Properties. Chemistry of Materials, 22(2), 398-408. doi:10.1021/cm902836g

Pereira, C., Pereira, A. M., Quaresma, P., Tavares, P. B., Pereira, E., Araújo, J. P., & Freire, C. (2010). Superparamagnetic γ-Fe2O3@SiO2 nanoparticles: a novel support for the immobilization of [VO(acac)2]. Dalton Transactions, 39(11), 2842. doi:10.1039/b920853d

Hess, C., Hoefelmeyer, J. D., & Tilley, T. D. (2004). Spectroscopic Characterization of Highly Dispersed Vanadia Supported on SBA-15. The Journal of Physical Chemistry B, 108(28), 9703-9709. doi:10.1021/jp037714r

Carn, F., Steunou, N., Djabourov, M., Coradin, T., Ribot, F., & Livage, J. (2008). First example of biopolymer–polyoxometalate complex coacervation in gelatin–decavanadate mixtures. Soft Matter, 4(4), 735. doi:10.1039/b719216a

Chen, W., Xu, Q., Hu, Y. S., Mai, L. Q., & Zhu, Q. Y. (2002). Effect of modification by poly(ethylene oxide) on the reversibility of insertion/extraction of Li+ ion in V2O5 xerogel films. Journal of Materials Chemistry, 12(6), 1926-1929. doi:10.1039/b203056j

Malta, M., Louarn, G., Errien, N., & Torresi, R. M. (2006). Redox behavior of nanohybrid material with defined morphology: Vanadium oxide nanotubes intercalated with polyaniline. Journal of Power Sources, 156(2), 533-540. doi:10.1016/j.jpowsour.2005.05.044

Chen, W., Mai, L., Qi, Y., & Dai, Y. (2006). One-dimensional nanomaterials of vanadium and molybdenum oxides. Journal of Physics and Chemistry of Solids, 67(5-6), 896-902. doi:10.1016/j.jpcs.2006.01.074

Willinger, M.-G., Neri, G., Rauwel, E., Bonavita, A., Micali, G., & Pinna, N. (2008). Vanadium Oxide Sensing Layer Grown on Carbon Nanotubes by a New Atomic Layer Deposition Process. Nano Letters, 8(12), 4201-4204. doi:10.1021/nl801785b

White, R. J., Budarin, V. L., & Clark, J. H. (2008). Tuneable Mesoporous Materials from α-D-Polysaccharides. ChemSusChem, 1(5), 408-411. doi:10.1002/cssc.200800012

White, R. J., Budarin, V., Luque, R., Clark, J. H., & Macquarrie, D. J. (2009). Tuneable porous carbonaceous materials from renewable resources. Chemical Society Reviews, 38(12), 3401. doi:10.1039/b822668g

Hu, B., Wang, K., Wu, L., Yu, S.-H., Antonietti, M., & Titirici, M.-M. (2010). Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Advanced Materials, 22(7), 813-828. doi:10.1002/adma.200902812

Dujardin, E., Blaseby, M., & Mann, S. (2003). Synthesis of mesoporous silica by sol–gel mineralisation of cellulose nanorod nematic suspensions. Journal of Materials Chemistry, 13(4), 696-699. doi:10.1039/b212689c

Guibal, E. (2005). Heterogeneous catalysis on chitosan-based materials: a review. Progress in Polymer Science, 30(1), 71-109. doi:10.1016/j.progpolymsci.2004.12.001

Macquarrie, D. J., & Hardy, J. J. E. (2005). Applications of Functionalized Chitosan in Catalysis†. Industrial & Engineering Chemistry Research, 44(23), 8499-8520. doi:10.1021/ie050007v

Gandini, A. (2008). Polymers from Renewable Resources: A Challenge for the Future of Macromolecular Materials. Macromolecules, 41(24), 9491-9504. doi:10.1021/ma801735u

Eissen, M., Metzger, J. O., Schmidt, E., & Schneidewind, U. (2002). 10 Jahre nach „Rio“ - Konzepte zum Beitrag der Chemie zu einer nachhaltigen Entwicklung. Angewandte Chemie, 114(3), 402-425. doi:10.1002/1521-3757(20020201)114:3<402::aid-ange402>3.0.co;2-d

Eissen, M., Metzger, J. O., Schmidt, E., & Schneidewind, U. (2002). 10 Years after Rio-Concepts on the Contribution of Chemistry to a Sustainable Development. Angewandte Chemie International Edition, 41(3), 414-436. doi:10.1002/1521-3773(20020201)41:3<414::aid-anie414>3.0.co;2-n

Lligadas, G., Ronda, J. C., Galià, M., & Cádiz, V. (2010). Plant Oils as Platform Chemicals for Polyurethane Synthesis: Current State-of-the-Art. Biomacromolecules, 11(11), 2825-2835. doi:10.1021/bm100839x

Cole-Hamilton, D. J. (2010). Polyethylen aus der Natur. Angewandte Chemie, 122(46), 8744-8746. doi:10.1002/ange.201002593

Cole-Hamilton, D. J. (2010). Nature’s Polyethylene. Angewandte Chemie International Edition, 49(46), 8564-8566. doi:10.1002/anie.201002593

El Kadib, A., Katir, N., Marcotte, N., Molvinger, K., Castel, A., Rivière, P., & Brunel, D. (2009). Nanocomposites from natural templates based on fatty compound-functionalised siloxanes. Journal of Materials Chemistry, 19(33), 6004. doi:10.1039/b906448f

Ruiz-Hitzky, E., Darder, M., Aranda, P., & Ariga, K. (2010). Advances in Biomimetic and Nanostructured Biohybrid Materials. Advanced Materials, 22(3), 323-336. doi:10.1002/adma.200901134

Dujardin, E., & Mann, S. (2002). Bio-inspired Materials Chemistry. Advanced Materials, 14(11), 775. doi:10.1002/1521-4095(20020605)14:11<775::aid-adma775>3.0.co;2-0

Sellinger, A., Weiss, P. M., Nguyen, A., Lu, Y., Assink, R. A., Gong, W., & Brinker, C. J. (1998). Continuous self-assembly of organic–inorganic nanocomposite coatings that mimic nacre. Nature, 394(6690), 256-260. doi:10.1038/28354

Valentin, R., Molvinger, K., Quignard, F., & Brunel, D. (2003). Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry. New Journal of Chemistry, 27(12), 1690. doi:10.1039/b310109f

Molvinger, K., Quignard, F., Brunel, D., Boissière, M., & Devoisselle, J.-M. (2004). Porous Chitosan-Silica Hybrid Microspheres as a Potential Catalyst. Chemistry of Materials, 16(17), 3367-3372. doi:10.1021/cm0353299

Kadib, A. E., Molvinger, K., Guimon, C., Quignard, F., & Brunel, D. (2008). Design of Stable Nanoporous Hybrid Chitosan/Titania as Cooperative Bifunctional Catalysts. Chemistry of Materials, 20(6), 2198-2204. doi:10.1021/cm800080s

Kadib, A. E., Molvinger, K., Bousmina, M., & Brunel, D. (2010). Improving Catalytic Activity by Synergic Effect between Base and Acid Pairs in Hierarchically Porous Chitosan@Titania Nanoreactors. Organic Letters, 12(5), 948-951. doi:10.1021/ol9029319

Kadib, A. E., Molvinger, K., Bousmina, M., & Brunel, D. (2010). Decoration of chitosan microspheres with inorganic oxide clusters: Rational design of hierarchically porous, stable and cooperative acid–base nanoreactors. Journal of Catalysis, 273(2), 147-155. doi:10.1016/j.jcat.2010.05.010

Kadib, A. E., Molvinger, K., Cacciaguerra, T., Bousmina, M., & Brunel, D. (2011). Chitosan templated synthesis of porous metal oxide microspheres with filamentary nanostructures. Microporous and Mesoporous Materials, 142(1), 301-307. doi:10.1016/j.micromeso.2010.12.012

Review:

Mallat, T., & Baiker, A. (2004). Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts. Chemical Reviews, 104(6), 3037-3058. doi:10.1021/cr0200116

De Vos, D. E., Dams, M., Sels, B. F., & Jacobs, P. A. (2002). Ordered Mesoporous and Microporous Molecular Sieves Functionalized with Transition Metal Complexes as Catalysts for Selective Organic Transformations. Chemical Reviews, 102(10), 3615-3640. doi:10.1021/cr010368u

For selected examples see:

Karimi, B., Abedi, S., Clark, J. H., & Budarin, V. (2006). Highly Efficient Aerobic Oxidation of Alcohols Using a Recoverable Catalyst: The Role of Mesoporous Channels of SBA-15 in Stabilizing Palladium Nanoparticles. Angewandte Chemie, 118(29), 4894-4897. doi:10.1002/ange.200504359

Karimi, B., Abedi, S., Clark, J. H., & Budarin, V. (2006). Highly Efficient Aerobic Oxidation of Alcohols Using a Recoverable Catalyst: The Role of Mesoporous Channels of SBA-15 in Stabilizing Palladium Nanoparticles. Angewandte Chemie International Edition, 45(29), 4776-4779. doi:10.1002/anie.200504359

Mori, K., Yamaguchi, K., Hara, T., Mizugaki, T., Ebitani, K., & Kaneda, K. (2002). Controlled Synthesis of Hydroxyapatite-Supported Palladium Complexes as Highly Efficient Heterogeneous Catalysts. Journal of the American Chemical Society, 124(39), 11572-11573. doi:10.1021/ja020444q

Mori, K., Hara, T., Mizugaki, T., Ebitani, K., & Kaneda, K. (2004). Hydroxyapatite-Supported Palladium Nanoclusters:  A Highly Active Heterogeneous Catalyst for Selective Oxidation of Alcohols by Use of Molecular Oxygen. Journal of the American Chemical Society, 126(34), 10657-10666. doi:10.1021/ja0488683

Yamaguchi, K., & Mizuno, N. (2002). Angewandte Chemie, 114(23), 4720-4724. doi:10.1002/1521-3757(20021202)114:23<4720::aid-ange4720>3.0.co;2-p

Yamaguchi, K., & Mizuno, N. (2002). Supported Ruthenium Catalyst for the Heterogeneous Oxidation of Alcohols with Molecular Oxygen. Angewandte Chemie International Edition, 41(23), 4538-4542. doi:10.1002/1521-3773(20021202)41:23<4538::aid-anie4538>3.0.co;2-6

Enache, D. I., Edwards, J. K., Landon, P., Solsona-Espriu, B., Carley, A. F., Herzing, A. A., … Hutchings, G. J. (2006). Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts. Science, 311(5759), 362-365. doi:10.1126/science.1120560

Abad, A., Concepción, P., Corma, A., & García, H. (2005). A Collaborative Effect between Gold and a Support Induces the Selective Oxidation of Alcohols. Angewandte Chemie, 117(26), 4134-4137. doi:10.1002/ange.200500382

Abad, A., Concepción, P., Corma, A., & García, H. (2005). A Collaborative Effect between Gold and a Support Induces the Selective Oxidation of Alcohols. Angewandte Chemie International Edition, 44(26), 4066-4069. doi:10.1002/anie.200500382

Comotti, M., Della Pina, C., Matarrese, R., & Rossi, M. (2004). The Catalytic Activity of ?Naked? Gold Particles. Angewandte Chemie, 116(43), 5936-5939. doi:10.1002/ange.200460446

Comotti, M., Della Pina, C., Matarrese, R., & Rossi, M. (2004). The Catalytic Activity of ?Naked? Gold Particles. Angewandte Chemie International Edition, 43(43), 5812-5815. doi:10.1002/anie.200460446

HOU, W., DEHM, N., & SCOTT, R. (2008). Alcohol oxidations in aqueous solutions using Au, Pd, and bimetallic AuPd nanoparticle catalysts. Journal of Catalysis, 253(1), 22-27. doi:10.1016/j.jcat.2007.10.025

Miyamura, H., Matsubara, R., Miyazaki, Y., & Kobayashi, S. (2007). Aerobic Oxidation of Alcohols at Room Temperature and Atmospheric Conditions Catalyzed by Reusable Gold Nanoclusters Stabilized by the Benzene Rings of Polystyrene Derivatives. Angewandte Chemie, 119(22), 4229-4232. doi:10.1002/ange.200700080

Miyamura, H., Matsubara, R., Miyazaki, Y., & Kobayashi, S. (2007). Aerobic Oxidation of Alcohols at Room Temperature and Atmospheric Conditions Catalyzed by Reusable Gold Nanoclusters Stabilized by the Benzene Rings of Polystyrene Derivatives. Angewandte Chemie International Edition, 46(22), 4151-4154. doi:10.1002/anie.200700080

Miyamura, H., Matsubara, R., & Kobayashi, S. (2008). Gold–platinum bimetallic clusters for aerobic oxidation of alcohols under ambient conditions. Chemical Communications, (17), 2031. doi:10.1039/b800657a

Chan-Thaw, C. E., Villa, A., Katekomol, P., Su, D., Thomas, A., & Prati, L. (2010). Covalent Triazine Framework as Catalytic Support for Liquid Phase Reaction. Nano Letters, 10(2), 537-541. doi:10.1021/nl904082k

Chan-Thaw, C. E., Villa, A., Prati, L., & Thomas, A. (2010). Triazine-Based Polymers as Nanostructured Supports for the Liquid-Phase Oxidation of Alcohols. Chemistry - A European Journal, 17(3), 1052-1057. doi:10.1002/chem.201000675

Karimi, B., Ghoreishi-Nezhad, M., & Clark, J. H. (2005). Selective Oxidation of Sulfides to Sulfoxides Using 30% Hydrogen Peroxide Catalyzed with a Recoverable Silica-Based Tungstate Interphase Catalyst. Organic Letters, 7(4), 625-628. doi:10.1021/ol047635d

Delpeux, S., Beguin, F., Benoit, R., Erre, R., Manolova, N., & Rashkov, I. (1998). Fullerene core star-like polymers—1. Preparation from fullerenes and monoazidopolyethers. European Polymer Journal, 34(7), 905-915. doi:10.1016/s0014-3057(97)00225-5

Kistler, S. S. (1932). Coherent Expanded-Aerogels. The Journal of Physical Chemistry, 36(1), 52-64. doi:10.1021/j150331a003

Pierre, A. C., & Pajonk, G. M. (2002). Chemistry of Aerogels and Their Applications. Chemical Reviews, 102(11), 4243-4266. doi:10.1021/cr0101306

Quignard, F., Valentin, R., & Di Renzo, F. (2008). Aerogel materials from marine polysaccharides. New Journal of Chemistry, 32(8), 1300. doi:10.1039/b808218a

The stability of chitosan under acidic and basic conditions has been discussed in ref. [15a]. Immersion of native chitosan beads in acetic acid (0.1 n) resulted in solubilisation of the gel network.

Barringer, E. A., & Bowen, H. K. (1985). High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties. Langmuir, 1(4), 414-420. doi:10.1021/la00064a005

Sanchez, C., Livage, J., Henry, M., & Babonneau, F. (1988). Chemical modification of alkoxide precursors. Journal of Non-Crystalline Solids, 100(1-3), 65-76. doi:10.1016/0022-3093(88)90007-5

Leaustic, A., Babonneau, F., & Livage, J. (1989). Structural investigation of the hydrolysis-condensation process of titanium alkoxides Ti(OR)4 (OR = OPr-iso, OEt) modified by acetylacetone. 1. Study of the alkoxide modification. Chemistry of Materials, 1(2), 240-247. doi:10.1021/cm00002a015

Guari, Y., Larionova, J., Molvinger, K., Folch, B., & Guérin, C. (2006). Magnetic water-soluble cyano-bridged metal coordination nano-polymers. Chem. Commun., (24), 2613-2615. doi:10.1039/b602460b

Larionova, J., Salmon, L., Guari, Y., Tokarev, A., Molvinger, K., Molnár, G., & Bousseksou, A. (2008). Towards the Ultimate Size Limit of the Memory Effect in Spin-Crossover Solids. Angewandte Chemie, 120(43), 8360-8364. doi:10.1002/ange.200802906

Larionova, J., Salmon, L., Guari, Y., Tokarev, A., Molvinger, K., Molnár, G., & Bousseksou, A. (2008). Towards the Ultimate Size Limit of the Memory Effect in Spin-Crossover Solids. Angewandte Chemie International Edition, 47(43), 8236-8240. doi:10.1002/anie.200802906

Guari, Y., Larionova, J., Corti, M., Lascialfari, A., Marinone, M., Poletti, G., … Guérin, C. (2008). Cyano-bridged coordination polymer nanoparticles with high nuclear relaxivity: toward new contrast agents for MRI. Dalton Transactions, (28), 3658. doi:10.1039/b808221a

Primo, A., & Quignard, F. (2010). Chitosan as efficient porous support for dispersion of highly active gold nanoparticles: design of hybrid catalyst for carbon–carbon bond formation. Chemical Communications, 46(30), 5593. doi:10.1039/c0cc01137a

Darder, M., López-Blanco, M., Aranda, P., Aznar, A. J., Bravo, J., & Ruiz-Hitzky, E. (2006). Microfibrous Chitosan−Sepiolite Nanocomposites. Chemistry of Materials, 18(6), 1602-1610. doi:10.1021/cm0523642

Kang, E. (1998). Polyaniline: A polymer with many interesting intrinsic redox states. Progress in Polymer Science, 23(2), 277-324. doi:10.1016/s0079-6700(97)00030-0

Dambies, L., Guimon, C., Yiacoumi, S., & Guibal, E. (2001). Characterization of metal ion interactions with chitosan by X-ray photoelectron spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177(2-3), 203-214. doi:10.1016/s0927-7757(00)00678-6

Wan, D., Yuan, S., Li, G. L., Neoh, K. G., & Kang, E. T. (2010). Glucose Biosensor from Covalent Immobilization of Chitosan-Coupled Carbon Nanotubes on Polyaniline-Modified Gold Electrode. ACS Applied Materials & Interfaces, 2(11), 3083-3091. doi:10.1021/am100591t

Muylaert, I., Borgers, M., Bruneel, E., Schaubroeck, J., Verpoort, F., & Van Der Voort, P. (2008). Ultra stable ordered mesoporous phenol/formaldehyde polymers as a heterogeneous support for vanadium oxide. Chemical Communications, (37), 4475. doi:10.1039/b808566h

Schraml-Marth, M., Wokaun, A., Pohl, M., & Krauss, H.-L. (1991). Spectroscopic investigation of the structure of silica-supported vanadium oxide catalysts at submonolayer coverages. Journal of the Chemical Society, Faraday Transactions, 87(16), 2635. doi:10.1039/ft9918702635

Sueoka, S., Mitsudome, T., Mizugaki, T., Jitsukawa, K., & Kaneda, K. (2010). Supported monomeric vanadium catalyst for dehydration of amides to form nitriles. Chemical Communications, 46(43), 8243. doi:10.1039/c0cc02412k

Khatri, P. K., Singh, B., Jain, S. L., Sain, B., & Sinha, A. K. (2011). Cyclotriphosphazene grafted silica: a novel support for immobilizing the oxo-vanadium Schiff base moieties for hydroxylation of benzene. Chem. Commun., 47(5), 1610-1612. doi:10.1039/c0cc01941k

El Kadib, A., Chimenton, R., Sachse, A., Fajula, F., Galarneau, A., & Coq, B. (2009). Functionalized Inorganic Monolithic Microreactors for High Productivity in Fine Chemicals Catalytic Synthesis. Angewandte Chemie, 121(27), 5069-5072. doi:10.1002/ange.200805580

El Kadib, A., Chimenton, R., Sachse, A., Fajula, F., Galarneau, A., & Coq, B. (2009). Functionalized Inorganic Monolithic Microreactors for High Productivity in Fine Chemicals Catalytic Synthesis. Angewandte Chemie International Edition, 48(27), 4969-4972. doi:10.1002/anie.200805580

Aguado, S., Canivet, J., & Farrusseng, D. (2010). Facile shaping of an imidazolate-based MOF on ceramic beads for adsorption and catalytic applications. Chemical Communications, 46(42), 7999. doi:10.1039/c0cc02045a

Sorokin, A. B., Quignard, F., Valentin, R., & Mangematin, S. (2006). Chitosan supported phthalocyanine complexes: Bifunctional catalysts with basic and oxidation active sites. Applied Catalysis A: General, 309(2), 162-168. doi:10.1016/j.apcata.2006.03.060

Guo, C.-C., Huang, G., Zhang, X.-B., & Guo, D.-C. (2003). Catalysis of chitosan-supported iron tetraphenylporphyrin for aerobic oxidation of cyclohexane in absence of reductants and solvents. Applied Catalysis A: General, 247(2), 261-267. doi:10.1016/s0926-860x(03)00108-x

Karimi, B., & Kabiri Esfahani, F. (2009). Gold nanoparticles supported on Cs2CO3 as recyclable catalyst system for selective aerobic oxidation of alcohols at room temperature. Chemical Communications, (37), 5555. doi:10.1039/b908964k

When monitoring the degradation of the materials used in catalysis by thermogravimetric analysis (TGA)/mass spectroscopy no product attributed to the oxidation of the support was observed.

Chitosan has been shown to be effective for adsorption and removal of vanadium tungsten and molybdenum from aqueous solutions:

Qian, S., Wang, H., Huang, G., Mo, S., & Wei, W. (2004). Studies of adsorption properties of crosslinked chitosan for vanadium(V), tungsten(VI). Journal of Applied Polymer Science, 92(3), 1584-1588. doi:10.1002/app.20102

Kufelnicki, A., Lichawska, M. E., & Bodek, K. H. (2009). Interaction of microcrystalline chitosan (MCCh) with Mo(VI) in aqueous solution. Journal of Applied Polymer Science, 114(3), 1619-1625. doi:10.1002/app.30756

Qian, S. H., Xue, A. F., Xiao, M., & Chen, H. (2006). Application of crosslinked chitosan in the analysis of ultratrace Mo(VI). Journal of Applied Polymer Science, 101(1), 432-435. doi:10.1002/app.23251

Navarro, R., Guzmán, J., Saucedo, I., Revilla, J., & Guibal, E. (2003). Recovery of Metal Ions by Chitosan: Sorption Mechanisms and Influence of Metal Speciation. Macromolecular Bioscience, 3(10), 552-561. doi:10.1002/mabi.200300013

Guzmán, J., Saucedo, I., Navarro, R., Revilla, J., & Guibal, E. (2002). Vanadium Interactions with Chitosan:  Influence of Polymer Protonation and Metal Speciation. Langmuir, 18(5), 1567-1573. doi:10.1021/la010802n

In some cases the fast re‐deposition of the leached active species back onto the support can result in a misconception about the result. So in the absence of an exhaustive study on this phenomenon the following results have to be carefully interpreted.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem