Mostrar el registro sencillo del ítem
dc.contributor.author | Lafforgue, Guillaume | es_ES |
dc.contributor.author | Martínez García, Fernando | es_ES |
dc.contributor.author | Sardanyes Cayuela, Jose | es_ES |
dc.contributor.author | De la Iglesia Jordán, Francisca | es_ES |
dc.contributor.author | Niu, Qi-Wen | es_ES |
dc.contributor.author | Lin, Shih-Shun | es_ES |
dc.contributor.author | Sole, Ricard V. | es_ES |
dc.contributor.author | Chua, Nam-Hai | es_ES |
dc.contributor.author | Daros Arnau, Jose Antonio | es_ES |
dc.contributor.author | Elena Fito, Santiago Fco | es_ES |
dc.date.accessioned | 2013-12-16T13:44:15Z | |
dc.date.available | 2013-12-16T13:44:15Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0022-538X | |
dc.identifier.uri | http://hdl.handle.net/10251/34546 | |
dc.description.abstract | A biotechnological application of artificial microRNAs (amiRs) is the generation of plants that are resistant to virus infection. This resistance has proven to be highly effective and sequence specific. However, before these transgenic plants can be deployed in the field, it is important to evaluate the likelihood of the emergence of resistance-breaking mutants. Two issues are of particular interest: (i) whether such mutants can arise in nontransgenic plants that may act as reservoirs and (ii) whether a suboptimal expression level of the transgene, resulting in subinhibitory concentrations of the amiR, would favor the emergence of escape mutants. To address the first issue, we experimentally evolved independent lineages of Turnip mosaic virus (TuMV) (family Potyviridae) in fully susceptible wild-type Arabidopsis thaliana plants and then simulated the spillover of the evolving virus to fully resistant A. thaliana transgenic plants. To address the second issue, the evolution phase took place with transgenic plants that expressed the amiR at subinhibitory concentrations. Our results show that TuMV populations replicating in susceptible hosts accumulated resistance-breaking alleles that resulted in the overcoming of the resistance of fully resistant plants. The rate at which resistance was broken was 7 times higher for TuMV populations that experienced subinhibitory concentrations of the antiviral amiR. A molecular characterization of escape alleles showed that they all contained at least one nucleotide substitution in the target sequence, generally a transition of the G-to-A and C-to-U types, with many instances of convergent molecular evolution. To better understand the viral population dynamics taking place within each host, as well as to evaluate relevant population genetic parameters, we performed in silico simulations of the experiments. Together, our results contribute to the rational management of amiR-based antiviral resistance in plants. | es_ES |
dc.description.sponsorship | This work was supported by Human Frontiers Science Program Organization grant RGP12/2008, Generalitat Valenciana grant PROMETEO/2010/019, and CSIC grant 2010TW0015. We also acknowledge support from The Santa Fe Institute. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Society for Microbiology | es_ES |
dc.relation.ispartof | Journal of Virology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cucumber-mosaic-virus | es_ES |
dc.subject | Antiretroviral resistance | es_ES |
dc.subject | Viral-RNA | es_ES |
dc.subject | Type-1 | es_ES |
dc.subject | Inhibition | es_ES |
dc.subject | Replication | es_ES |
dc.subject | Arabidopsis | es_ES |
dc.subject | Mutations | es_ES |
dc.subject | Efficient | es_ES |
dc.subject | Transcription | es_ES |
dc.title | Tempo and mode of plant RNA virus escape from RNA interference-mediated resistance | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1128/JVI.05326-11 | |
dc.relation.projectID | info:eu-repo/grantAgreement/HFSP//RGP0012%2F2008/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F019/ES/Implicaciones evolutivas de la supresión del silenciamiento del RNA por parte de proteína virales/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CSIC//2010TW0015/ES/Evaluation of the durability of artificial microRNA-mediated strategies for plant resistance to RNA viruses/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Lafforgue, G.; Martínez García, F.; Sardanyes Cayuela, J.; De La Iglesia Jordán, F.; Niu, Q.; Lin, S.; Sole, RV.... (2011). Tempo and mode of plant RNA virus escape from RNA interference-mediated resistance. Journal of Virology. 85(19):9686-9695. https://doi.org/10.1128/JVI.05326-11 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1128/JVI.05326-11 | es_ES |
dc.description.upvformatpinicio | 9686 | es_ES |
dc.description.upvformatpfin | 9695 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 85 | es_ES |
dc.description.issue | 19 | es_ES |
dc.relation.senia | 216049 | |
dc.identifier.pmid | 21775453 | en_EN |
dc.identifier.pmcid | PMC3196453 | en_EN |
dc.contributor.funder | Human Frontier Science Program Organization | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Consejo Superior de Investigaciones Científicas; National Science Council of Taiwan | es_ES |
dc.contributor.funder | Santa Fe Institute | es_ES |
dc.description.references | Ali, A., Li, H., Schneider, W. L., Sherman, D. J., Gray, S., Smith, D., & Roossinck, M. J. (2006). Analysis of Genetic Bottlenecks during Horizontal Transmission of Cucumber Mosaic Virus. Journal of Virology, 80(17), 8345-8350. doi:10.1128/jvi.00568-06 | es_ES |
dc.description.references | Betancourt, M., Fereres, A., Fraile, A., & Garcia-Arenal, F. (2008). Estimation of the Effective Number of Founders That Initiate an Infection after Aphid Transmission of a Multipartite Plant Virus. Journal of Virology, 82(24), 12416-12421. doi:10.1128/jvi.01542-08 | es_ES |
dc.description.references | Bishop, K. N. (2004). APOBEC-Mediated Editing of Viral RNA. Science, 305(5684), 645-645. doi:10.1126/science.1100658 | es_ES |
dc.description.references | Boden, D., Pusch, O., Lee, F., Tucker, L., & Ramratnam, B. (2003). Human Immunodeficiency Virus Type 1 Escape from RNA Interference. Journal of Virology, 77(21), 11531-11535. doi:10.1128/jvi.77.21.11531-11535.2003 | es_ES |
dc.description.references | Boucher, C. A. B., O’Sullivan, E., Mulder, J. W., Ramautarsing, C., Kellam, P., Darby, G., … Larder, B. A. (1992). Ordered Appearance of Zidovudine Resistance Mutations during Treatment of 18 Human Immunodeficiency Virus-Positive Subjects. Journal of Infectious Diseases, 165(1), 105-110. doi:10.1093/infdis/165.1.105 | es_ES |
dc.description.references | Boyes, D. C. (2001). Growth Stage-Based Phenotypic Analysis of Arabidopsis: A Model for High Throughput Functional Genomics in Plants. THE PLANT CELL ONLINE, 13(7), 1499-1510. doi:10.1105/tpc.13.7.1499 | es_ES |
dc.description.references | Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y. Y., Sieburth, L., & Voinnet, O. (2008). Widespread Translational Inhibition by Plant miRNAs and siRNAs. Science, 320(5880), 1185-1190. doi:10.1126/science.1159151 | es_ES |
dc.description.references | Burch, C. L., Guyader, S., Samarov, D., & Shen, H. (2007). Experimental Estimate of the Abundance and Effects of Nearly Neutral Mutations in the RNA Virus ϕ6. Genetics, 176(1), 467-476. doi:10.1534/genetics.106.067199 | es_ES |
dc.description.references | Chen, C. C., Chao, C. H., Chen, C. C., Yeh, S. D., Tsai, H. T., & Chang, C. A. (2003). Identification ofTurnip mosaic virusIsolates Causing Yellow Stripe and Spot on Calla Lily. Plant Disease, 87(8), 901-905. doi:10.1094/pdis.2003.87.8.901 | es_ES |
dc.description.references | Chen, Y.-K., Lohuis, D., Goldbach, R., & Prins, M. (2004). High frequency induction of RNA-mediated resistance against Cucumber mosaic virus using inverted repeat constructs. Molecular Breeding, 14(3), 215-226. doi:10.1023/b:molb.0000047769.82881.f5 | es_ES |
dc.description.references | Coburn, G. A., & Cullen, B. R. (2002). Potent and Specific Inhibition of Human Immunodeficiency Virus Type 1 Replication by RNA Interference. Journal of Virology, 76(18), 9225-9231. doi:10.1128/jvi.76.18.9225-9231.2002 | es_ES |
dc.description.references | Conticello, S. G., Thomas, C. J. F., Petersen-Mahrt, S. K., & Neuberger, M. S. (2004). Evolution of the AID/APOBEC Family of Polynucleotide (Deoxy)cytidine Deaminases. Molecular Biology and Evolution, 22(2), 367-377. doi:10.1093/molbev/msi026 | es_ES |
dc.description.references | Couce, A., & Blázquez, J. (2009). Side effects of antibiotics on genetic variability. FEMS Microbiology Reviews, 33(3), 531-538. doi:10.1111/j.1574-6976.2009.00165.x | es_ES |
dc.description.references | Cullen, B. R. (2006). Role and Mechanism of Action of the APOBEC3 Family of Antiretroviral Resistance Factors. Journal of Virology, 80(3), 1067-1076. doi:10.1128/jvi.80.3.1067-1076.2006 | es_ES |
dc.description.references | Das, A. T., Brummelkamp, T. R., Westerhout, E. M., Vink, M., Madiredjo, M., Bernards, R., & Berkhout, B. (2004). Human Immunodeficiency Virus Type 1 Escapes from RNA Interference-Mediated Inhibition. Journal of Virology, 78(5), 2601-2605. doi:10.1128/jvi.78.5.2601-2605.2004 | es_ES |
dc.description.references | Nicola-Negri, E. D., Brunetti, A., Tavazza, M., & Ilardi, V. (2005). Hairpin RNA-Mediated Silencing of Plum pox virus P1 and HC-Pro Genes for Efficient and Predictable Resistance to the Virus. Transgenic Research, 14(6), 989-994. doi:10.1007/s11248-005-1773-y | es_ES |
dc.description.references | Elbashir, S. M. (2001). Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. The EMBO Journal, 20(23), 6877-6888. doi:10.1093/emboj/20.23.6877 | es_ES |
dc.description.references | Elena, S. F., Solé, R. V., & Sardanyés, J. (2010). Simple genomes, complex interactions: Epistasis in RNA virus. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(2), 026106. doi:10.1063/1.3449300 | es_ES |
dc.description.references | García-Arenal, F., & McDonald, B. A. (2003). An Analysis of the Durability of Resistance to Plant Viruses. Phytopathology, 93(8), 941-952. doi:10.1094/phyto.2003.93.8.941 | es_ES |
dc.description.references | Ge, Q., McManus, M. T., Nguyen, T., Shen, C.-H., Sharp, P. A., Eisen, H. N., & Chen, J. (2003). RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proceedings of the National Academy of Sciences, 100(5), 2718-2723. doi:10.1073/pnas.0437841100 | es_ES |
dc.description.references | Gitlin, L., Stone, J. K., & Andino, R. (2004). Poliovirus Escape from RNA Interference: Short Interfering RNA-Target Recognition and Implications for Therapeutic Approaches. Journal of Virology, 79(2), 1027-1035. doi:10.1128/jvi.79.2.1027-1035.2005 | es_ES |
dc.description.references | Guo, H.-S., Xie, Q., Fei, J.-F., & Chua, N.-H. (2005). MicroRNA Directs mRNA Cleavage of the Transcription Factor NAC1 to Downregulate Auxin Signals for Arabidopsis Lateral Root Development. The Plant Cell, 17(5), 1376-1386. doi:10.1105/tpc.105.030841 | es_ES |
dc.description.references | Hamilton, A. J. (1999). A Species of Small Antisense RNA in Posttranscriptional Gene Silencing in Plants. Science, 286(5441), 950-952. doi:10.1126/science.286.5441.950 | es_ES |
dc.description.references | Haydon, D., Knowles, N., & McCauley, J. (1998). Virus Genes, 16(3), 253-266. doi:10.1023/a:1008018403582 | es_ES |
dc.description.references | Jridi, C., Martin, J.-F., Marie-Jeanne, V., Labonne, G., & Blanc, S. (2006). Distinct Viral Populations Differentiate and Evolve Independently in a Single Perennial Host Plant. Journal of Virology, 80(5), 2349-2357. doi:10.1128/jvi.80.5.2349-2357.2006 | es_ES |
dc.description.references | Kalantidis, K., Psaradakis, S., Tabler, M., & Tsagris, M. (2002). The Occurrence of CMV-Specific Short RNAs in Transgenic Tobacco Expressing Virus-Derived Double-Stranded RNA is Indicative of Resistance to the Virus. Molecular Plant-Microbe Interactions, 15(8), 826-833. doi:10.1094/mpmi.2002.15.8.826 | es_ES |
dc.description.references | Kronke, J., Kittler, R., Buchholz, F., Windisch, M. P., Pietschmann, T., Bartenschlager, R., & Frese, M. (2004). Alternative Approaches for Efficient Inhibition of Hepatitis C Virus RNA Replication by Small Interfering RNAs. Journal of Virology, 78(7), 3436-3446. doi:10.1128/jvi.78.7.3436-3446.2004 | es_ES |
dc.description.references | Lin, S.-S., Wu, H.-W., Elena, S. F., Chen, K.-C., Niu, Q.-W., Yeh, S.-D., … Chua, N.-H. (2009). Molecular Evolution of a Viral Non-Coding Sequence under the Selective Pressure of amiRNA-Mediated Silencing. PLoS Pathogens, 5(2), e1000312. doi:10.1371/journal.ppat.1000312 | es_ES |
dc.description.references | Lindbo, J. A., & Dougherty, W. G. (2005). Plant Pathology and RNAi: A Brief History. Annual Review of Phytopathology, 43(1), 191-204. doi:10.1146/annurev.phyto.43.040204.140228 | es_ES |
dc.description.references | Marin, J., & Sole, R. V. (1999). Macroevolutionary algorithms: a new optimization method on fitness landscapes. IEEE Transactions on Evolutionary Computation, 3(4), 272-286. doi:10.1109/4235.797970 | es_ES |
dc.description.references | Martinez-Picado, J., DePasquale, M. P., Kartsonis, N., Hanna, G. J., Wong, J., Finzi, D., … D’Aquila, R. T. (2000). Antiretroviral resistance during successful therapy of HIV type 1 infection. Proceedings of the National Academy of Sciences, 97(20), 10948-10953. doi:10.1073/pnas.97.20.10948 | es_ES |
dc.description.references | Missiou, A., Kalantidis, K., Boutla, A., Tzortzakaki, S., Tabler, M., & Tsagris, M. (2004). Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Molecular Breeding, 14(2), 185-197. doi:10.1023/b:molb.0000038006.32812.52 | es_ES |
dc.description.references | Moury, B., Fabre, F., & Senoussi, R. (2007). Estimation of the number of virus particles transmitted by an insect vector. Proceedings of the National Academy of Sciences, 104(45), 17891-17896. doi:10.1073/pnas.0702739104 | es_ES |
dc.description.references | Niu, Q.-W., Lin, S.-S., Reyes, J. L., Chen, K.-C., Wu, H.-W., Yeh, S.-D., & Chua, N.-H. (2006). Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology, 24(11), 1420-1428. doi:10.1038/nbt1255 | es_ES |
dc.description.references | Qu, J., Ye, J., & Fang, R. (2007). Artificial MicroRNA-Mediated Virus Resistance in Plants. Journal of Virology, 81(12), 6690-6699. doi:10.1128/jvi.02457-06 | es_ES |
dc.description.references | Sabariegos, R., Gimenez-Barcons, M., Tapia, N., Clotet, B., & Martinez, M. A. (2005). Sequence Homology Required by Human Immunodeficiency Virus Type 1 To Escape from Short Interfering RNAs. Journal of Virology, 80(2), 571-577. doi:10.1128/jvi.80.2.571-577.2006 | es_ES |
dc.description.references | Sanjuán, R., Agudelo-Romero, P., & Elena, S. F. (2009). Upper-limit mutation rate estimation for a plant RNA virus. Biology Letters, 5(3), 394-396. doi:10.1098/rsbl.2008.0762 | es_ES |
dc.description.references | Sardanyes, J., Sole, R. V., & Elena, S. F. (2009). Replication Mode and Landscape Topology Differentially Affect RNA Virus Mutational Load and Robustness. Journal of Virology, 83(23), 12579-12589. doi:10.1128/jvi.00767-09 | es_ES |
dc.description.references | Tromas, N., & Elena, S. F. (2010). The Rate and Spectrum of Spontaneous Mutations in a Plant RNA Virus. Genetics, 185(3), 983-989. doi:10.1534/genetics.110.115915 | es_ES |
dc.description.references | Turturo, C., Friscina, A., Gaubert, S., Jacquemond, M., Thompson, J. R., & Tepfer, M. (2008). Evaluation of potential risks associated with recombination in transgenic plants expressing viral sequences. Journal of General Virology, 89(1), 327-335. doi:10.1099/vir.0.83339-0 | es_ES |
dc.description.references | Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E. F., & Hellens, R. P. (2007). Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods, 3(1), 12. doi:10.1186/1746-4811-3-12 | es_ES |
dc.description.references | Vaucheret, H. (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes & Development, 18(10), 1187-1197. doi:10.1101/gad.1201404 | es_ES |
dc.description.references | Vincenzetti, S., Cambi, A., Neuhard, J., Schnorr, K., Grelloni, M., & Vita, A. (1999). Cloning, Expression, and Purification of Cytidine Deaminase fromArabidopsis thaliana. Protein Expression and Purification, 15(1), 8-15. doi:10.1006/prep.1998.0959 | es_ES |
dc.description.references | Von Eije, K. J., Brake, O. t., & Berkhout, B. (2007). Human Immunodeficiency Virus Type 1 Escape Is Restricted When Conserved Genome Sequences Are Targeted by RNA Interference. Journal of Virology, 82(6), 2895-2903. doi:10.1128/jvi.02035-07 | es_ES |
dc.description.references | Wang, M.-B., Abbott, D. C., & Waterhouse, P. M. (2000). A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Molecular Plant Pathology, 1(6), 347-356. doi:10.1046/j.1364-3703.2000.00038.x | es_ES |
dc.description.references | Warthmann, N., Chen, H., Ossowski, S., Weigel, D., & Hervé, P. (2008). Highly Specific Gene Silencing by Artificial miRNAs in Rice. PLoS ONE, 3(3), e1829. doi:10.1371/journal.pone.0001829 | es_ES |
dc.description.references | Westerhout, E. M., & Berkhout, B. (2007). A systematic analysis of the effect of target RNA structure on RNA interference. Nucleic Acids Research, 35(13), 4322-4330. doi:10.1093/nar/gkm437 | es_ES |
dc.description.references | Westerhout, E. M. (2005). HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Research, 33(2), 796-804. doi:10.1093/nar/gki220 | es_ES |
dc.description.references | Wichman, H. A. (1999). Different Trajectories of Parallel Evolution During Viral Adaptation. Science, 285(5426), 422-424. doi:10.1126/science.285.5426.422 | es_ES |