- -

Tempo and mode of plant RNA virus escape from RNA interference-mediated resistance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tempo and mode of plant RNA virus escape from RNA interference-mediated resistance

Mostrar el registro completo del ítem

Lafforgue, G.; Martínez García, F.; Sardanyes Cayuela, J.; De La Iglesia Jordán, F.; Niu, Q.; Lin, S.; Sole, RV.... (2011). Tempo and mode of plant RNA virus escape from RNA interference-mediated resistance. Journal of Virology. 85(19):9686-9695. https://doi.org/10.1128/JVI.05326-11

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/34546

Ficheros en el ítem

Metadatos del ítem

Título: Tempo and mode of plant RNA virus escape from RNA interference-mediated resistance
Autor: Lafforgue, Guillaume Martínez García, Fernando Sardanyes Cayuela, Jose De la Iglesia Jordán, Francisca Niu, Qi-Wen Lin, Shih-Shun Sole, Ricard V. Chua, Nam-Hai Daros Arnau, Jose Antonio Elena Fito, Santiago Fco
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
A biotechnological application of artificial microRNAs (amiRs) is the generation of plants that are resistant to virus infection. This resistance has proven to be highly effective and sequence specific. However, before ...[+]
Palabras clave: Cucumber-mosaic-virus , Antiretroviral resistance , Viral-RNA , Type-1 , Inhibition , Replication , Arabidopsis , Mutations , Efficient , Transcription
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Virology. (issn: 0022-538X )
DOI: 10.1128/JVI.05326-11
Editorial:
American Society for Microbiology
Versión del editor: http://dx.doi.org/10.1128/JVI.05326-11
Código del Proyecto:
info:eu-repo/grantAgreement/HFSP//RGP0012%2F2008/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F019/ES/Implicaciones evolutivas de la supresión del silenciamiento del RNA por parte de proteína virales/
info:eu-repo/grantAgreement/CSIC//2010TW0015/ES/Evaluation of the durability of artificial microRNA-mediated strategies for plant resistance to RNA viruses/
Agradecimientos:
This work was supported by Human Frontiers Science Program Organization grant RGP12/2008, Generalitat Valenciana grant PROMETEO/2010/019, and CSIC grant 2010TW0015. We also acknowledge support from The Santa Fe Institute.[+]
Tipo: Artículo

References

Ali, A., Li, H., Schneider, W. L., Sherman, D. J., Gray, S., Smith, D., & Roossinck, M. J. (2006). Analysis of Genetic Bottlenecks during Horizontal Transmission of Cucumber Mosaic Virus. Journal of Virology, 80(17), 8345-8350. doi:10.1128/jvi.00568-06

Betancourt, M., Fereres, A., Fraile, A., & Garcia-Arenal, F. (2008). Estimation of the Effective Number of Founders That Initiate an Infection after Aphid Transmission of a Multipartite Plant Virus. Journal of Virology, 82(24), 12416-12421. doi:10.1128/jvi.01542-08

Bishop, K. N. (2004). APOBEC-Mediated Editing of Viral RNA. Science, 305(5684), 645-645. doi:10.1126/science.1100658 [+]
Ali, A., Li, H., Schneider, W. L., Sherman, D. J., Gray, S., Smith, D., & Roossinck, M. J. (2006). Analysis of Genetic Bottlenecks during Horizontal Transmission of Cucumber Mosaic Virus. Journal of Virology, 80(17), 8345-8350. doi:10.1128/jvi.00568-06

Betancourt, M., Fereres, A., Fraile, A., & Garcia-Arenal, F. (2008). Estimation of the Effective Number of Founders That Initiate an Infection after Aphid Transmission of a Multipartite Plant Virus. Journal of Virology, 82(24), 12416-12421. doi:10.1128/jvi.01542-08

Bishop, K. N. (2004). APOBEC-Mediated Editing of Viral RNA. Science, 305(5684), 645-645. doi:10.1126/science.1100658

Boden, D., Pusch, O., Lee, F., Tucker, L., & Ramratnam, B. (2003). Human Immunodeficiency Virus Type 1 Escape from RNA Interference. Journal of Virology, 77(21), 11531-11535. doi:10.1128/jvi.77.21.11531-11535.2003

Boucher, C. A. B., O’Sullivan, E., Mulder, J. W., Ramautarsing, C., Kellam, P., Darby, G., … Larder, B. A. (1992). Ordered Appearance of Zidovudine Resistance Mutations during Treatment of 18 Human Immunodeficiency Virus-Positive Subjects. Journal of Infectious Diseases, 165(1), 105-110. doi:10.1093/infdis/165.1.105

Boyes, D. C. (2001). Growth Stage-Based Phenotypic Analysis of Arabidopsis: A Model for High Throughput Functional Genomics in Plants. THE PLANT CELL ONLINE, 13(7), 1499-1510. doi:10.1105/tpc.13.7.1499

Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y. Y., Sieburth, L., & Voinnet, O. (2008). Widespread Translational Inhibition by Plant miRNAs and siRNAs. Science, 320(5880), 1185-1190. doi:10.1126/science.1159151

Burch, C. L., Guyader, S., Samarov, D., & Shen, H. (2007). Experimental Estimate of the Abundance and Effects of Nearly Neutral Mutations in the RNA Virus ϕ6. Genetics, 176(1), 467-476. doi:10.1534/genetics.106.067199

Chen, C. C., Chao, C. H., Chen, C. C., Yeh, S. D., Tsai, H. T., & Chang, C. A. (2003). Identification ofTurnip mosaic virusIsolates Causing Yellow Stripe and Spot on Calla Lily. Plant Disease, 87(8), 901-905. doi:10.1094/pdis.2003.87.8.901

Chen, Y.-K., Lohuis, D., Goldbach, R., & Prins, M. (2004). High frequency induction of RNA-mediated resistance against Cucumber mosaic virus using inverted repeat constructs. Molecular Breeding, 14(3), 215-226. doi:10.1023/b:molb.0000047769.82881.f5

Coburn, G. A., & Cullen, B. R. (2002). Potent and Specific Inhibition of Human Immunodeficiency Virus Type 1 Replication by RNA Interference. Journal of Virology, 76(18), 9225-9231. doi:10.1128/jvi.76.18.9225-9231.2002

Conticello, S. G., Thomas, C. J. F., Petersen-Mahrt, S. K., & Neuberger, M. S. (2004). Evolution of the AID/APOBEC Family of Polynucleotide (Deoxy)cytidine Deaminases. Molecular Biology and Evolution, 22(2), 367-377. doi:10.1093/molbev/msi026

Couce, A., & Blázquez, J. (2009). Side effects of antibiotics on genetic variability. FEMS Microbiology Reviews, 33(3), 531-538. doi:10.1111/j.1574-6976.2009.00165.x

Cullen, B. R. (2006). Role and Mechanism of Action of the APOBEC3 Family of Antiretroviral Resistance Factors. Journal of Virology, 80(3), 1067-1076. doi:10.1128/jvi.80.3.1067-1076.2006

Das, A. T., Brummelkamp, T. R., Westerhout, E. M., Vink, M., Madiredjo, M., Bernards, R., & Berkhout, B. (2004). Human Immunodeficiency Virus Type 1 Escapes from RNA Interference-Mediated Inhibition. Journal of Virology, 78(5), 2601-2605. doi:10.1128/jvi.78.5.2601-2605.2004

Nicola-Negri, E. D., Brunetti, A., Tavazza, M., & Ilardi, V. (2005). Hairpin RNA-Mediated Silencing of Plum pox virus P1 and HC-Pro Genes for Efficient and Predictable Resistance to the Virus. Transgenic Research, 14(6), 989-994. doi:10.1007/s11248-005-1773-y

Elbashir, S. M. (2001). Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. The EMBO Journal, 20(23), 6877-6888. doi:10.1093/emboj/20.23.6877

Elena, S. F., Solé, R. V., & Sardanyés, J. (2010). Simple genomes, complex interactions: Epistasis in RNA virus. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(2), 026106. doi:10.1063/1.3449300

García-Arenal, F., & McDonald, B. A. (2003). An Analysis of the Durability of Resistance to Plant Viruses. Phytopathology, 93(8), 941-952. doi:10.1094/phyto.2003.93.8.941

Ge, Q., McManus, M. T., Nguyen, T., Shen, C.-H., Sharp, P. A., Eisen, H. N., & Chen, J. (2003). RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proceedings of the National Academy of Sciences, 100(5), 2718-2723. doi:10.1073/pnas.0437841100

Gitlin, L., Stone, J. K., & Andino, R. (2004). Poliovirus Escape from RNA Interference: Short Interfering RNA-Target Recognition and Implications for Therapeutic Approaches. Journal of Virology, 79(2), 1027-1035. doi:10.1128/jvi.79.2.1027-1035.2005

Guo, H.-S., Xie, Q., Fei, J.-F., & Chua, N.-H. (2005). MicroRNA Directs mRNA Cleavage of the Transcription Factor NAC1 to Downregulate Auxin Signals for Arabidopsis Lateral Root Development. The Plant Cell, 17(5), 1376-1386. doi:10.1105/tpc.105.030841

Hamilton, A. J. (1999). A Species of Small Antisense RNA in Posttranscriptional Gene Silencing in Plants. Science, 286(5441), 950-952. doi:10.1126/science.286.5441.950

Haydon, D., Knowles, N., & McCauley, J. (1998). Virus Genes, 16(3), 253-266. doi:10.1023/a:1008018403582

Jridi, C., Martin, J.-F., Marie-Jeanne, V., Labonne, G., & Blanc, S. (2006). Distinct Viral Populations Differentiate and Evolve Independently in a Single Perennial Host Plant. Journal of Virology, 80(5), 2349-2357. doi:10.1128/jvi.80.5.2349-2357.2006

Kalantidis, K., Psaradakis, S., Tabler, M., & Tsagris, M. (2002). The Occurrence of CMV-Specific Short RNAs in Transgenic Tobacco Expressing Virus-Derived Double-Stranded RNA is Indicative of Resistance to the Virus. Molecular Plant-Microbe Interactions, 15(8), 826-833. doi:10.1094/mpmi.2002.15.8.826

Kronke, J., Kittler, R., Buchholz, F., Windisch, M. P., Pietschmann, T., Bartenschlager, R., & Frese, M. (2004). Alternative Approaches for Efficient Inhibition of Hepatitis C Virus RNA Replication by Small Interfering RNAs. Journal of Virology, 78(7), 3436-3446. doi:10.1128/jvi.78.7.3436-3446.2004

Lin, S.-S., Wu, H.-W., Elena, S. F., Chen, K.-C., Niu, Q.-W., Yeh, S.-D., … Chua, N.-H. (2009). Molecular Evolution of a Viral Non-Coding Sequence under the Selective Pressure of amiRNA-Mediated Silencing. PLoS Pathogens, 5(2), e1000312. doi:10.1371/journal.ppat.1000312

Lindbo, J. A., & Dougherty, W. G. (2005). Plant Pathology and RNAi: A Brief History. Annual Review of Phytopathology, 43(1), 191-204. doi:10.1146/annurev.phyto.43.040204.140228

Marin, J., & Sole, R. V. (1999). Macroevolutionary algorithms: a new optimization method on fitness landscapes. IEEE Transactions on Evolutionary Computation, 3(4), 272-286. doi:10.1109/4235.797970

Martinez-Picado, J., DePasquale, M. P., Kartsonis, N., Hanna, G. J., Wong, J., Finzi, D., … D’Aquila, R. T. (2000). Antiretroviral resistance during successful therapy of HIV type 1 infection. Proceedings of the National Academy of Sciences, 97(20), 10948-10953. doi:10.1073/pnas.97.20.10948

Missiou, A., Kalantidis, K., Boutla, A., Tzortzakaki, S., Tabler, M., & Tsagris, M. (2004). Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Molecular Breeding, 14(2), 185-197. doi:10.1023/b:molb.0000038006.32812.52

Moury, B., Fabre, F., & Senoussi, R. (2007). Estimation of the number of virus particles transmitted by an insect vector. Proceedings of the National Academy of Sciences, 104(45), 17891-17896. doi:10.1073/pnas.0702739104

Niu, Q.-W., Lin, S.-S., Reyes, J. L., Chen, K.-C., Wu, H.-W., Yeh, S.-D., & Chua, N.-H. (2006). Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology, 24(11), 1420-1428. doi:10.1038/nbt1255

Qu, J., Ye, J., & Fang, R. (2007). Artificial MicroRNA-Mediated Virus Resistance in Plants. Journal of Virology, 81(12), 6690-6699. doi:10.1128/jvi.02457-06

Sabariegos, R., Gimenez-Barcons, M., Tapia, N., Clotet, B., & Martinez, M. A. (2005). Sequence Homology Required by Human Immunodeficiency Virus Type 1 To Escape from Short Interfering RNAs. Journal of Virology, 80(2), 571-577. doi:10.1128/jvi.80.2.571-577.2006

Sanjuán, R., Agudelo-Romero, P., & Elena, S. F. (2009). Upper-limit mutation rate estimation for a plant RNA virus. Biology Letters, 5(3), 394-396. doi:10.1098/rsbl.2008.0762

Sardanyes, J., Sole, R. V., & Elena, S. F. (2009). Replication Mode and Landscape Topology Differentially Affect RNA Virus Mutational Load and Robustness. Journal of Virology, 83(23), 12579-12589. doi:10.1128/jvi.00767-09

Tromas, N., & Elena, S. F. (2010). The Rate and Spectrum of Spontaneous Mutations in a Plant RNA Virus. Genetics, 185(3), 983-989. doi:10.1534/genetics.110.115915

Turturo, C., Friscina, A., Gaubert, S., Jacquemond, M., Thompson, J. R., & Tepfer, M. (2008). Evaluation of potential risks associated with recombination in transgenic plants expressing viral sequences. Journal of General Virology, 89(1), 327-335. doi:10.1099/vir.0.83339-0

Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E. F., & Hellens, R. P. (2007). Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods, 3(1), 12. doi:10.1186/1746-4811-3-12

Vaucheret, H. (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes & Development, 18(10), 1187-1197. doi:10.1101/gad.1201404

Vincenzetti, S., Cambi, A., Neuhard, J., Schnorr, K., Grelloni, M., & Vita, A. (1999). Cloning, Expression, and Purification of Cytidine Deaminase fromArabidopsis thaliana. Protein Expression and Purification, 15(1), 8-15. doi:10.1006/prep.1998.0959

Von Eije, K. J., Brake, O. t., & Berkhout, B. (2007). Human Immunodeficiency Virus Type 1 Escape Is Restricted When Conserved Genome Sequences Are Targeted by RNA Interference. Journal of Virology, 82(6), 2895-2903. doi:10.1128/jvi.02035-07

Wang, M.-B., Abbott, D. C., & Waterhouse, P. M. (2000). A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Molecular Plant Pathology, 1(6), 347-356. doi:10.1046/j.1364-3703.2000.00038.x

Warthmann, N., Chen, H., Ossowski, S., Weigel, D., & Hervé, P. (2008). Highly Specific Gene Silencing by Artificial miRNAs in Rice. PLoS ONE, 3(3), e1829. doi:10.1371/journal.pone.0001829

Westerhout, E. M., & Berkhout, B. (2007). A systematic analysis of the effect of target RNA structure on RNA interference. Nucleic Acids Research, 35(13), 4322-4330. doi:10.1093/nar/gkm437

Westerhout, E. M. (2005). HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Research, 33(2), 796-804. doi:10.1093/nar/gki220

Wichman, H. A. (1999). Different Trajectories of Parallel Evolution During Viral Adaptation. Science, 285(5426), 422-424. doi:10.1126/science.285.5426.422

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem