- -

Microstructure and Mechanical Behavior of Porous Ti-6Al-4V Processed by Spherical Powder Sintering

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Microstructure and Mechanical Behavior of Porous Ti-6Al-4V Processed by Spherical Powder Sintering

Mostrar el registro completo del ítem

Reig Cerdá, L.; Tojal Domenech, C.; Busquets Mataix, DJ.; Amigó Borrás, V. (2013). Microstructure and Mechanical Behavior of Porous Ti-6Al-4V Processed by Spherical Powder Sintering. Materials. 6(10):4868-4878. https://doi.org/10.3390/ma6104868

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/37438

Ficheros en el ítem

Metadatos del ítem

Título: Microstructure and Mechanical Behavior of Porous Ti-6Al-4V Processed by Spherical Powder Sintering
Autor: Reig Cerdá, Lucía Tojal Domenech, Concepcion Busquets Mataix, David Jerónimo Amigó Borrás, Vicente
Entidad UPV: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
Reducing the stiffness of titanium is an important issue to improve the behavior of this material when working together with bone, which can be achieved by generating a porous structure. The aim of this research was to ...[+]
Palabras clave: Porous titanium , Microsphere sintering , Bending strength , Compressive strength , Stiffness , Metallic implant
Derechos de uso: Reconocimiento (by)
Fuente:
Materials. (issn: 1996-1944 )
DOI: 10.3390/ma6104868
Editorial:
MDPI
Versión del editor: http://dx.doi.org/10.3390/ma6104868
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//PIB2010BZ-00448/ES/PROCESADO DE NUEVAS ALEACIONES DE TI PARA APLICACIONES DE BAJO MODULO ELASTICO Y ALTA RESISTENCIA/
Agradecimientos:
The authors are grateful to the Spanish Ministry of Economy and Competitiveness for supporting this research by Project PIB2010BZ-00448. They also thank the Universitat Jaume I for funding the translation of this paper.
Tipo: Artículo

References

Özcan, M., & Hämmerle, C. (2012). Titanium as a Reconstruction and Implant Material in Dentistry: Advantages and Pitfalls. Materials, 5(9), 1528-1545. doi:10.3390/ma5091528

Asaoka, K., & Kon, M. (2003). Sintered Porous Titanium and Titanium Alloys as Advanced Biomaterials. Materials Science Forum, 426-432, 3079-3084. doi:10.4028/www.scientific.net/msf.426-432.3079

Niinomi, M. (2003). Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced Materials, 4(5), 445-454. doi:10.1016/j.stam.2003.09.002 [+]
Özcan, M., & Hämmerle, C. (2012). Titanium as a Reconstruction and Implant Material in Dentistry: Advantages and Pitfalls. Materials, 5(9), 1528-1545. doi:10.3390/ma5091528

Asaoka, K., & Kon, M. (2003). Sintered Porous Titanium and Titanium Alloys as Advanced Biomaterials. Materials Science Forum, 426-432, 3079-3084. doi:10.4028/www.scientific.net/msf.426-432.3079

Niinomi, M. (2003). Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced Materials, 4(5), 445-454. doi:10.1016/j.stam.2003.09.002

Reig, L., Amigó, V., Busquets, D. J., & Calero, J. A. (2012). Development of porous Ti6Al4V samples by microsphere sintering. Journal of Materials Processing Technology, 212(1), 3-7. doi:10.1016/j.jmatprotec.2011.06.026

Sumitomo, N., Noritake, K., Hattori, T., Morikawa, K., Niwa, S., Sato, K., & Niinomi, M. (2008). Experiment study on fracture fixation with low rigidity titanium alloy. Journal of Materials Science: Materials in Medicine, 19(4), 1581-1586. doi:10.1007/s10856-008-3372-y

Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 30-42. doi:10.1016/j.jmbbm.2007.07.001

Zhou, Y.-L., & Niinomi, M. (2009). Ti–25Ta alloy with the best mechanical compatibility in Ti–Ta alloys for biomedical applications. Materials Science and Engineering: C, 29(3), 1061-1065. doi:10.1016/j.msec.2008.09.012

Málek, J., Hnilica, F., Veselý, J., Smola, B., Bartáková, S., & Vaněk, J. (2012). Microstructure and mechanical properties of Ti-35Nb-6Ta alloy after thermomechanical treatment. Materials Characterization, 66, 75-82. doi:10.1016/j.matchar.2012.02.012

Afonso, C. R. M., Aleixo, G. T., Ramirez, A. J., & Caram, R. (2007). Influence of cooling rate on microstructure of Ti–Nb alloy for orthopedic implants. Materials Science and Engineering: C, 27(4), 908-913. doi:10.1016/j.msec.2006.11.001

Nugroho, A. W., Leadbeater, G., & Davies, I. J. (2010). Processing of a porous titanium alloy from elemental powders using a solid state isothermal foaming technique. Journal of Materials Science: Materials in Medicine, 21(12), 3103-3107. doi:10.1007/s10856-010-4162-x

Barbas, A., Bonnet, A.-S., Lipinski, P., Pesci, R., & Dubois, G. (2012). Development and mechanical characterization of porous titanium bone substitutes. Journal of the Mechanical Behavior of Biomedical Materials, 9, 34-44. doi:10.1016/j.jmbbm.2012.01.008

Wieding, J., Jonitz, A., & Bader, R. (2012). The Effect of Structural Design on Mechanical Properties and Cellular Response of Additive Manufactured Titanium Scaffolds. Materials, 5(8), 1336-1347. doi:10.3390/ma5081336

Dezfuli, S. N., Sadrnezhaad, S. K., Shokrgozar, M. A., & Bonakdar, S. (2012). Fabrication of biocompatible titanium scaffolds using space holder technique. Journal of Materials Science: Materials in Medicine, 23(10), 2483-2488. doi:10.1007/s10856-012-4706-3

Reig, L., Amigó, V., Busquets, D., & Calero, J. A. (2011). Stiffness variation of porous titanium developed using space holder method. Powder Metallurgy, 54(3), 389-392. doi:10.1179/003258910x12707304455068

Amigó, V., Reig, L., Busquets, D. J., Ortiz, J. L., & Calero, J. A. (2011). Analysis of bending strength of porous titanium processed by space holder method. Powder Metallurgy, 54(1), 67-70. doi:10.1179/174329009x409697

Amigó, V., Salvador, M. D., Romero, F., Solves, C., & Moreno, J. F. (2003). Microstructural evolution of Ti–6Al–4V during the sintering of microspheres of Ti for orthopedic implants. Journal of Materials Processing Technology, 141(1), 117-122. doi:10.1016/s0924-0136(03)00243-7

Bansiddhi, A., Sargeant, T. D., Stupp, S. I., & Dunand, D. C. (2008). Porous NiTi for bone implants: A review. Acta Biomaterialia, 4(4), 773-782. doi:10.1016/j.actbio.2008.02.009

RYAN, G., PANDIT, A., & APATSIDIS, D. (2006). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 27(13), 2651-2670. doi:10.1016/j.biomaterials.2005.12.002

Kujala, S., Ryhänen, J., Danilov, A., & Tuukkanen, J. (2003). Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel–titanium bone graft substitute. Biomaterials, 24(25), 4691-4697. doi:10.1016/s0142-9612(03)00359-4

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem