- -

Microstructure and Mechanical Behavior of Porous Ti-6Al-4V Processed by Spherical Powder Sintering

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Microstructure and Mechanical Behavior of Porous Ti-6Al-4V Processed by Spherical Powder Sintering

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Reig Cerdá, Lucía es_ES
dc.contributor.author Tojal Domenech, Concepcion es_ES
dc.contributor.author Busquets Mataix, David Jerónimo es_ES
dc.contributor.author Amigó Borrás, Vicente es_ES
dc.date.accessioned 2014-05-13T08:28:49Z
dc.date.available 2014-05-13T08:28:49Z
dc.date.issued 2013-09-23
dc.identifier.issn 1996-1944
dc.identifier.uri http://hdl.handle.net/10251/37438
dc.description.abstract Reducing the stiffness of titanium is an important issue to improve the behavior of this material when working together with bone, which can be achieved by generating a porous structure. The aim of this research was to analyze the porosity and mechanical behavior of Ti-6Al-4V porous samples developed by spherical powder sintering. Four different microsphere sizes were sintered at temperatures ranging from 1300 to 1400 degrees C for 2, 4 and 8 h. An open, interconnected porosity was obtained, with mean pore sizes ranging from 54.6 to 140 mu m. The stiffness of the samples diminished by as much as 40% when compared to that of solid material and the mechanical properties were affected mainly by powder particles size. Bending strengths ranging from 48 to 320 MPa and compressive strengths from 51 to 255 MPa were obtained. es_ES
dc.description.sponsorship The authors are grateful to the Spanish Ministry of Economy and Competitiveness for supporting this research by Project PIB2010BZ-00448. They also thank the Universitat Jaume I for funding the translation of this paper. en_EN
dc.format.extent 11 es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Materials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Porous titanium es_ES
dc.subject Microsphere sintering es_ES
dc.subject Bending strength es_ES
dc.subject Compressive strength es_ES
dc.subject Stiffness es_ES
dc.subject Metallic implant es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Microstructure and Mechanical Behavior of Porous Ti-6Al-4V Processed by Spherical Powder Sintering es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ma6104868
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PIB2010BZ-00448/ES/PROCESADO DE NUEVAS ALEACIONES DE TI PARA APLICACIONES DE BAJO MODULO ELASTICO Y ALTA RESISTENCIA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Reig Cerdá, L.; Tojal Domenech, C.; Busquets Mataix, DJ.; Amigó Borrás, V. (2013). Microstructure and Mechanical Behavior of Porous Ti-6Al-4V Processed by Spherical Powder Sintering. Materials. 6(10):4868-4878. https://doi.org/10.3390/ma6104868 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/ma6104868 es_ES
dc.description.upvformatpinicio 4868 es_ES
dc.description.upvformatpfin 4878 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 258608
dc.identifier.pmid 28788365 en_EN
dc.identifier.pmcid PMC5452833 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Özcan, M., & Hämmerle, C. (2012). Titanium as a Reconstruction and Implant Material in Dentistry: Advantages and Pitfalls. Materials, 5(9), 1528-1545. doi:10.3390/ma5091528 es_ES
dc.description.references Asaoka, K., & Kon, M. (2003). Sintered Porous Titanium and Titanium Alloys as Advanced Biomaterials. Materials Science Forum, 426-432, 3079-3084. doi:10.4028/www.scientific.net/msf.426-432.3079 es_ES
dc.description.references Niinomi, M. (2003). Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced Materials, 4(5), 445-454. doi:10.1016/j.stam.2003.09.002 es_ES
dc.description.references Reig, L., Amigó, V., Busquets, D. J., & Calero, J. A. (2012). Development of porous Ti6Al4V samples by microsphere sintering. Journal of Materials Processing Technology, 212(1), 3-7. doi:10.1016/j.jmatprotec.2011.06.026 es_ES
dc.description.references Sumitomo, N., Noritake, K., Hattori, T., Morikawa, K., Niwa, S., Sato, K., & Niinomi, M. (2008). Experiment study on fracture fixation with low rigidity titanium alloy. Journal of Materials Science: Materials in Medicine, 19(4), 1581-1586. doi:10.1007/s10856-008-3372-y es_ES
dc.description.references Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 30-42. doi:10.1016/j.jmbbm.2007.07.001 es_ES
dc.description.references Zhou, Y.-L., & Niinomi, M. (2009). Ti–25Ta alloy with the best mechanical compatibility in Ti–Ta alloys for biomedical applications. Materials Science and Engineering: C, 29(3), 1061-1065. doi:10.1016/j.msec.2008.09.012 es_ES
dc.description.references Málek, J., Hnilica, F., Veselý, J., Smola, B., Bartáková, S., & Vaněk, J. (2012). Microstructure and mechanical properties of Ti-35Nb-6Ta alloy after thermomechanical treatment. Materials Characterization, 66, 75-82. doi:10.1016/j.matchar.2012.02.012 es_ES
dc.description.references Afonso, C. R. M., Aleixo, G. T., Ramirez, A. J., & Caram, R. (2007). Influence of cooling rate on microstructure of Ti–Nb alloy for orthopedic implants. Materials Science and Engineering: C, 27(4), 908-913. doi:10.1016/j.msec.2006.11.001 es_ES
dc.description.references Nugroho, A. W., Leadbeater, G., & Davies, I. J. (2010). Processing of a porous titanium alloy from elemental powders using a solid state isothermal foaming technique. Journal of Materials Science: Materials in Medicine, 21(12), 3103-3107. doi:10.1007/s10856-010-4162-x es_ES
dc.description.references Barbas, A., Bonnet, A.-S., Lipinski, P., Pesci, R., & Dubois, G. (2012). Development and mechanical characterization of porous titanium bone substitutes. Journal of the Mechanical Behavior of Biomedical Materials, 9, 34-44. doi:10.1016/j.jmbbm.2012.01.008 es_ES
dc.description.references Wieding, J., Jonitz, A., & Bader, R. (2012). The Effect of Structural Design on Mechanical Properties and Cellular Response of Additive Manufactured Titanium Scaffolds. Materials, 5(8), 1336-1347. doi:10.3390/ma5081336 es_ES
dc.description.references Dezfuli, S. N., Sadrnezhaad, S. K., Shokrgozar, M. A., & Bonakdar, S. (2012). Fabrication of biocompatible titanium scaffolds using space holder technique. Journal of Materials Science: Materials in Medicine, 23(10), 2483-2488. doi:10.1007/s10856-012-4706-3 es_ES
dc.description.references Reig, L., Amigó, V., Busquets, D., & Calero, J. A. (2011). Stiffness variation of porous titanium developed using space holder method. Powder Metallurgy, 54(3), 389-392. doi:10.1179/003258910x12707304455068 es_ES
dc.description.references Amigó, V., Reig, L., Busquets, D. J., Ortiz, J. L., & Calero, J. A. (2011). Analysis of bending strength of porous titanium processed by space holder method. Powder Metallurgy, 54(1), 67-70. doi:10.1179/174329009x409697 es_ES
dc.description.references Amigó, V., Salvador, M. D., Romero, F., Solves, C., & Moreno, J. F. (2003). Microstructural evolution of Ti–6Al–4V during the sintering of microspheres of Ti for orthopedic implants. Journal of Materials Processing Technology, 141(1), 117-122. doi:10.1016/s0924-0136(03)00243-7 es_ES
dc.description.references Bansiddhi, A., Sargeant, T. D., Stupp, S. I., & Dunand, D. C. (2008). Porous NiTi for bone implants: A review. Acta Biomaterialia, 4(4), 773-782. doi:10.1016/j.actbio.2008.02.009 es_ES
dc.description.references RYAN, G., PANDIT, A., & APATSIDIS, D. (2006). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 27(13), 2651-2670. doi:10.1016/j.biomaterials.2005.12.002 es_ES
dc.description.references Kujala, S., Ryhänen, J., Danilov, A., & Tuukkanen, J. (2003). Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel–titanium bone graft substitute. Biomaterials, 24(25), 4691-4697. doi:10.1016/s0142-9612(03)00359-4 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem