Mostrar el registro sencillo del ítem
dc.contributor.author | Reig Cerdá, Lucía | es_ES |
dc.contributor.author | Tojal Domenech, Concepcion | es_ES |
dc.contributor.author | Busquets Mataix, David Jerónimo | es_ES |
dc.contributor.author | Amigó Borrás, Vicente | es_ES |
dc.date.accessioned | 2014-05-13T08:28:49Z | |
dc.date.available | 2014-05-13T08:28:49Z | |
dc.date.issued | 2013-09-23 | |
dc.identifier.issn | 1996-1944 | |
dc.identifier.uri | http://hdl.handle.net/10251/37438 | |
dc.description.abstract | Reducing the stiffness of titanium is an important issue to improve the behavior of this material when working together with bone, which can be achieved by generating a porous structure. The aim of this research was to analyze the porosity and mechanical behavior of Ti-6Al-4V porous samples developed by spherical powder sintering. Four different microsphere sizes were sintered at temperatures ranging from 1300 to 1400 degrees C for 2, 4 and 8 h. An open, interconnected porosity was obtained, with mean pore sizes ranging from 54.6 to 140 mu m. The stiffness of the samples diminished by as much as 40% when compared to that of solid material and the mechanical properties were affected mainly by powder particles size. Bending strengths ranging from 48 to 320 MPa and compressive strengths from 51 to 255 MPa were obtained. | es_ES |
dc.description.sponsorship | The authors are grateful to the Spanish Ministry of Economy and Competitiveness for supporting this research by Project PIB2010BZ-00448. They also thank the Universitat Jaume I for funding the translation of this paper. | en_EN |
dc.format.extent | 11 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Materials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Porous titanium | es_ES |
dc.subject | Microsphere sintering | es_ES |
dc.subject | Bending strength | es_ES |
dc.subject | Compressive strength | es_ES |
dc.subject | Stiffness | es_ES |
dc.subject | Metallic implant | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Microstructure and Mechanical Behavior of Porous Ti-6Al-4V Processed by Spherical Powder Sintering | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ma6104868 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PIB2010BZ-00448/ES/PROCESADO DE NUEVAS ALEACIONES DE TI PARA APLICACIONES DE BAJO MODULO ELASTICO Y ALTA RESISTENCIA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Reig Cerdá, L.; Tojal Domenech, C.; Busquets Mataix, DJ.; Amigó Borrás, V. (2013). Microstructure and Mechanical Behavior of Porous Ti-6Al-4V Processed by Spherical Powder Sintering. Materials. 6(10):4868-4878. https://doi.org/10.3390/ma6104868 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3390/ma6104868 | es_ES |
dc.description.upvformatpinicio | 4868 | es_ES |
dc.description.upvformatpfin | 4878 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.senia | 258608 | |
dc.identifier.pmid | 28788365 | en_EN |
dc.identifier.pmcid | PMC5452833 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Özcan, M., & Hämmerle, C. (2012). Titanium as a Reconstruction and Implant Material in Dentistry: Advantages and Pitfalls. Materials, 5(9), 1528-1545. doi:10.3390/ma5091528 | es_ES |
dc.description.references | Asaoka, K., & Kon, M. (2003). Sintered Porous Titanium and Titanium Alloys as Advanced Biomaterials. Materials Science Forum, 426-432, 3079-3084. doi:10.4028/www.scientific.net/msf.426-432.3079 | es_ES |
dc.description.references | Niinomi, M. (2003). Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced Materials, 4(5), 445-454. doi:10.1016/j.stam.2003.09.002 | es_ES |
dc.description.references | Reig, L., Amigó, V., Busquets, D. J., & Calero, J. A. (2012). Development of porous Ti6Al4V samples by microsphere sintering. Journal of Materials Processing Technology, 212(1), 3-7. doi:10.1016/j.jmatprotec.2011.06.026 | es_ES |
dc.description.references | Sumitomo, N., Noritake, K., Hattori, T., Morikawa, K., Niwa, S., Sato, K., & Niinomi, M. (2008). Experiment study on fracture fixation with low rigidity titanium alloy. Journal of Materials Science: Materials in Medicine, 19(4), 1581-1586. doi:10.1007/s10856-008-3372-y | es_ES |
dc.description.references | Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 30-42. doi:10.1016/j.jmbbm.2007.07.001 | es_ES |
dc.description.references | Zhou, Y.-L., & Niinomi, M. (2009). Ti–25Ta alloy with the best mechanical compatibility in Ti–Ta alloys for biomedical applications. Materials Science and Engineering: C, 29(3), 1061-1065. doi:10.1016/j.msec.2008.09.012 | es_ES |
dc.description.references | Málek, J., Hnilica, F., Veselý, J., Smola, B., Bartáková, S., & Vaněk, J. (2012). Microstructure and mechanical properties of Ti-35Nb-6Ta alloy after thermomechanical treatment. Materials Characterization, 66, 75-82. doi:10.1016/j.matchar.2012.02.012 | es_ES |
dc.description.references | Afonso, C. R. M., Aleixo, G. T., Ramirez, A. J., & Caram, R. (2007). Influence of cooling rate on microstructure of Ti–Nb alloy for orthopedic implants. Materials Science and Engineering: C, 27(4), 908-913. doi:10.1016/j.msec.2006.11.001 | es_ES |
dc.description.references | Nugroho, A. W., Leadbeater, G., & Davies, I. J. (2010). Processing of a porous titanium alloy from elemental powders using a solid state isothermal foaming technique. Journal of Materials Science: Materials in Medicine, 21(12), 3103-3107. doi:10.1007/s10856-010-4162-x | es_ES |
dc.description.references | Barbas, A., Bonnet, A.-S., Lipinski, P., Pesci, R., & Dubois, G. (2012). Development and mechanical characterization of porous titanium bone substitutes. Journal of the Mechanical Behavior of Biomedical Materials, 9, 34-44. doi:10.1016/j.jmbbm.2012.01.008 | es_ES |
dc.description.references | Wieding, J., Jonitz, A., & Bader, R. (2012). The Effect of Structural Design on Mechanical Properties and Cellular Response of Additive Manufactured Titanium Scaffolds. Materials, 5(8), 1336-1347. doi:10.3390/ma5081336 | es_ES |
dc.description.references | Dezfuli, S. N., Sadrnezhaad, S. K., Shokrgozar, M. A., & Bonakdar, S. (2012). Fabrication of biocompatible titanium scaffolds using space holder technique. Journal of Materials Science: Materials in Medicine, 23(10), 2483-2488. doi:10.1007/s10856-012-4706-3 | es_ES |
dc.description.references | Reig, L., Amigó, V., Busquets, D., & Calero, J. A. (2011). Stiffness variation of porous titanium developed using space holder method. Powder Metallurgy, 54(3), 389-392. doi:10.1179/003258910x12707304455068 | es_ES |
dc.description.references | Amigó, V., Reig, L., Busquets, D. J., Ortiz, J. L., & Calero, J. A. (2011). Analysis of bending strength of porous titanium processed by space holder method. Powder Metallurgy, 54(1), 67-70. doi:10.1179/174329009x409697 | es_ES |
dc.description.references | Amigó, V., Salvador, M. D., Romero, F., Solves, C., & Moreno, J. F. (2003). Microstructural evolution of Ti–6Al–4V during the sintering of microspheres of Ti for orthopedic implants. Journal of Materials Processing Technology, 141(1), 117-122. doi:10.1016/s0924-0136(03)00243-7 | es_ES |
dc.description.references | Bansiddhi, A., Sargeant, T. D., Stupp, S. I., & Dunand, D. C. (2008). Porous NiTi for bone implants: A review. Acta Biomaterialia, 4(4), 773-782. doi:10.1016/j.actbio.2008.02.009 | es_ES |
dc.description.references | RYAN, G., PANDIT, A., & APATSIDIS, D. (2006). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 27(13), 2651-2670. doi:10.1016/j.biomaterials.2005.12.002 | es_ES |
dc.description.references | Kujala, S., Ryhänen, J., Danilov, A., & Tuukkanen, J. (2003). Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel–titanium bone graft substitute. Biomaterials, 24(25), 4691-4697. doi:10.1016/s0142-9612(03)00359-4 | es_ES |