Özcan, M., & Hämmerle, C. (2012). Titanium as a Reconstruction and Implant Material in Dentistry: Advantages and Pitfalls. Materials, 5(9), 1528-1545. doi:10.3390/ma5091528
Asaoka, K., & Kon, M. (2003). Sintered Porous Titanium and Titanium Alloys as Advanced Biomaterials. Materials Science Forum, 426-432, 3079-3084. doi:10.4028/www.scientific.net/msf.426-432.3079
Niinomi, M. (2003). Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced Materials, 4(5), 445-454. doi:10.1016/j.stam.2003.09.002
[+]
Özcan, M., & Hämmerle, C. (2012). Titanium as a Reconstruction and Implant Material in Dentistry: Advantages and Pitfalls. Materials, 5(9), 1528-1545. doi:10.3390/ma5091528
Asaoka, K., & Kon, M. (2003). Sintered Porous Titanium and Titanium Alloys as Advanced Biomaterials. Materials Science Forum, 426-432, 3079-3084. doi:10.4028/www.scientific.net/msf.426-432.3079
Niinomi, M. (2003). Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced Materials, 4(5), 445-454. doi:10.1016/j.stam.2003.09.002
Reig, L., Amigó, V., Busquets, D. J., & Calero, J. A. (2012). Development of porous Ti6Al4V samples by microsphere sintering. Journal of Materials Processing Technology, 212(1), 3-7. doi:10.1016/j.jmatprotec.2011.06.026
Sumitomo, N., Noritake, K., Hattori, T., Morikawa, K., Niwa, S., Sato, K., & Niinomi, M. (2008). Experiment study on fracture fixation with low rigidity titanium alloy. Journal of Materials Science: Materials in Medicine, 19(4), 1581-1586. doi:10.1007/s10856-008-3372-y
Niinomi, M. (2008). Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 30-42. doi:10.1016/j.jmbbm.2007.07.001
Zhou, Y.-L., & Niinomi, M. (2009). Ti–25Ta alloy with the best mechanical compatibility in Ti–Ta alloys for biomedical applications. Materials Science and Engineering: C, 29(3), 1061-1065. doi:10.1016/j.msec.2008.09.012
Málek, J., Hnilica, F., Veselý, J., Smola, B., Bartáková, S., & Vaněk, J. (2012). Microstructure and mechanical properties of Ti-35Nb-6Ta alloy after thermomechanical treatment. Materials Characterization, 66, 75-82. doi:10.1016/j.matchar.2012.02.012
Afonso, C. R. M., Aleixo, G. T., Ramirez, A. J., & Caram, R. (2007). Influence of cooling rate on microstructure of Ti–Nb alloy for orthopedic implants. Materials Science and Engineering: C, 27(4), 908-913. doi:10.1016/j.msec.2006.11.001
Nugroho, A. W., Leadbeater, G., & Davies, I. J. (2010). Processing of a porous titanium alloy from elemental powders using a solid state isothermal foaming technique. Journal of Materials Science: Materials in Medicine, 21(12), 3103-3107. doi:10.1007/s10856-010-4162-x
Barbas, A., Bonnet, A.-S., Lipinski, P., Pesci, R., & Dubois, G. (2012). Development and mechanical characterization of porous titanium bone substitutes. Journal of the Mechanical Behavior of Biomedical Materials, 9, 34-44. doi:10.1016/j.jmbbm.2012.01.008
Wieding, J., Jonitz, A., & Bader, R. (2012). The Effect of Structural Design on Mechanical Properties and Cellular Response of Additive Manufactured Titanium Scaffolds. Materials, 5(8), 1336-1347. doi:10.3390/ma5081336
Dezfuli, S. N., Sadrnezhaad, S. K., Shokrgozar, M. A., & Bonakdar, S. (2012). Fabrication of biocompatible titanium scaffolds using space holder technique. Journal of Materials Science: Materials in Medicine, 23(10), 2483-2488. doi:10.1007/s10856-012-4706-3
Reig, L., Amigó, V., Busquets, D., & Calero, J. A. (2011). Stiffness variation of porous titanium developed using space holder method. Powder Metallurgy, 54(3), 389-392. doi:10.1179/003258910x12707304455068
Amigó, V., Reig, L., Busquets, D. J., Ortiz, J. L., & Calero, J. A. (2011). Analysis of bending strength of porous titanium processed by space holder method. Powder Metallurgy, 54(1), 67-70. doi:10.1179/174329009x409697
Amigó, V., Salvador, M. D., Romero, F., Solves, C., & Moreno, J. F. (2003). Microstructural evolution of Ti–6Al–4V during the sintering of microspheres of Ti for orthopedic implants. Journal of Materials Processing Technology, 141(1), 117-122. doi:10.1016/s0924-0136(03)00243-7
Bansiddhi, A., Sargeant, T. D., Stupp, S. I., & Dunand, D. C. (2008). Porous NiTi for bone implants: A review. Acta Biomaterialia, 4(4), 773-782. doi:10.1016/j.actbio.2008.02.009
RYAN, G., PANDIT, A., & APATSIDIS, D. (2006). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 27(13), 2651-2670. doi:10.1016/j.biomaterials.2005.12.002
Kujala, S., Ryhänen, J., Danilov, A., & Tuukkanen, J. (2003). Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel–titanium bone graft substitute. Biomaterials, 24(25), 4691-4697. doi:10.1016/s0142-9612(03)00359-4
[-]