Mostrar el registro sencillo del ítem
dc.contributor.author | Garcerá Sanfeliú, Gabriel | es_ES |
dc.contributor.author | González Medina, Raúl | es_ES |
dc.contributor.author | Figueres Amorós, Emilio | es_ES |
dc.contributor.author | Sandía Paredes, Jesús | es_ES |
dc.date.accessioned | 2014-06-13T09:50:29Z | |
dc.date.issued | 2012-08 | |
dc.identifier.issn | 0098-9886 | |
dc.identifier.uri | http://hdl.handle.net/10251/38114 | |
dc.description.abstract | In photovoltaic (PV) double-stage grid-connected inverters a high-frequency DC-DC isolation and voltage step-up stage is commonly used between the panel and the grid-connected inverter. This paper is focused on the modeling and control design of DC-DC converters with Peak Current mode Control (PCC) and an external control loop of the PV panel voltage, which works following a voltage reference provided by a maximum power point tracking (MPPT) algorithm. In the proposed overall control structure the output voltage of the DC-DC converter is regulated by the grid-connected inverter. Therefore, the inverter may be considered as a constant voltage load for the development of the small-signal model of the DC-DC converter, whereas the PV panel is considered as a negative resistance. The sensitivity of the control loops to variations of the power extracted from the PV panel and of its voltage is studied. The theoretical analysis is corroborated by frequency response measurements on a 230 W experimental inverter working from a single PV panel. The inverter is based on a Flyback DC-DC converter operating in discontinuous conduction mode (DCM) followed by a PWM full-bridge single-phase inverter. The time response of the whole system (DC-DC + inverter) is also shown to validate the concept. Copyright © 2011 John Wiley & Sons, Ltd. In photovoltaic (PV) double-stage gridconnected inverters a high-frequency DC-DC isolation and voltage step-up stage is commonly used between the panel and the grid-connected inverter. This paper is focused on the modeling and control design of DC-DC converters with Peak Current mode Control (PCC) and an external control loop of the PV panel voltage, which works following a voltage reference provided by a maximum power point tracking (MPPT) algorithm. The sensitivity of the control loops to variations of the power extracted from the PV panel and of its voltage is studied. Copyright © 2011 John Wiley & Sons, Ltd. Copyright © 2011 John Wiley & Sons, Ltd. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministry of Science and Innovation (MICINN) under grant ENE2009-13998-C02-02. The company AUSTRIAMICROSYSTEMS co-financed this project. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | International Journal of Circuit Theory and Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Current mode control | es_ES |
dc.subject | DC-DC power conversion | es_ES |
dc.subject | Inverters | es_ES |
dc.subject | Modeling | es_ES |
dc.subject | Photovoltaic power systems | es_ES |
dc.subject | Constant voltage | es_ES |
dc.subject | Control loop | es_ES |
dc.subject | Discontinuous conduction mode | es_ES |
dc.subject | External control | es_ES |
dc.subject | Flyback | es_ES |
dc.subject | Frequency response measurement | es_ES |
dc.subject | Full-bridge | es_ES |
dc.subject | Grid connected inverters | es_ES |
dc.subject | High frequency HF | es_ES |
dc.subject | Maximum Power Point Tracking | es_ES |
dc.subject | Modeling and control | es_ES |
dc.subject | Output voltages | es_ES |
dc.subject | Overall control structure | es_ES |
dc.subject | Peak current control | es_ES |
dc.subject | Peak current mode control | es_ES |
dc.subject | Photovoltaic | es_ES |
dc.subject | PV panel | es_ES |
dc.subject | Single-phase inverters | es_ES |
dc.subject | Small signal model | es_ES |
dc.subject | Time response | es_ES |
dc.subject | Voltage reference | es_ES |
dc.subject | DC-DC converters | es_ES |
dc.subject | Frequency response | es_ES |
dc.subject | HVDC power transmission | es_ES |
dc.subject | Models | es_ES |
dc.subject | Photovoltaic cells | es_ES |
dc.subject | Sensitivity analysis | es_ES |
dc.subject | Electric inverters | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Dynamic modeling of DC-DC converters with peak current control in double-stage photovoltaic grid-connected inverters | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.identifier.doi | 10.1002/cta.756 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//ENE2009-13998-C02-02/ES/Estructuras Flexibles De Control De Convertidores Electronicos Para Procesado E Integracion De Energias Renovables En Microrredes/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Grupo de Sistemas Electrónicos Industriales | es_ES |
dc.description.bibliographicCitation | Garcerá Sanfeliú, G.; González Medina, R.; Figueres Amorós, E.; Sandía Paredes, J. (2012). Dynamic modeling of DC-DC converters with peak current control in double-stage photovoltaic grid-connected inverters. International Journal of Circuit Theory and Applications. 40(8):793-813. https://doi.org/10.1002/cta.756 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://onlinelibrary.wiley.com/doi/10.1002/cta.756/abstract;jsessionid=64A7DB6D8CEF48D2EE19BA570A91F122.f02t03 | es_ES |
dc.description.upvformatpinicio | 793 | es_ES |
dc.description.upvformatpfin | 813 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 40 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.senia | 193877 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | austriamicrosystems AG | es_ES |
dc.description.references | Carrasco, J. M., Franquelo, L. G., Bialasiewicz, J. T., Galvan, E., PortilloGuisado, R. C., Prats, M. A. M., … Moreno-Alfonso, N. (2006). Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey. IEEE Transactions on Industrial Electronics, 53(4), 1002-1016. doi:10.1109/tie.2006.878356 | es_ES |
dc.description.references | Kjaer, S. B., Pedersen, J. K., & Blaabjerg, F. (2005). A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules. IEEE Transactions on Industry Applications, 41(5), 1292-1306. doi:10.1109/tia.2005.853371 | es_ES |
dc.description.references | Ridley, R. B. (1991). A new, continuous-time model for current-mode control (power convertors). IEEE Transactions on Power Electronics, 6(2), 271-280. doi:10.1109/63.76813 | es_ES |
dc.description.references | Femia, N., Petrone, G., Spagnuolo, G., & Vitelli, M. (2005). Optimization of Perturb and Observe Maximum Power Point Tracking Method. IEEE Transactions on Power Electronics, 20(4), 963-973. doi:10.1109/tpel.2005.850975 | es_ES |
dc.description.references | Hua, C., & Lin, J. (2004). A modified tracking algorithm for maximum power tracking of solar array. Energy Conversion and Management, 45(6), 911-925. doi:10.1016/s0196-8904(03)00193-6 | es_ES |
dc.description.references | Tan, Y. T., Kirschen, D. S., & Jenkins, N. (2004). A Model of PV Generation Suitable for Stability Analysis. IEEE Transactions on Energy Conversion, 19(4), 748-755. doi:10.1109/tec.2004.827707 | es_ES |
dc.description.references | Femia, N., Petrone, G., Spagnuolo, G., & Vitelli, M. (2009). A Technique for Improving P&O MPPT Performances of Double-Stage Grid-Connected Photovoltaic Systems. IEEE Transactions on Industrial Electronics, 56(11), 4473-4482. doi:10.1109/tie.2009.2029589 | es_ES |
dc.description.references | Chiu, H.-J., Huang, H.-M., Yang, H.-T., & Cheng, S.-J. (2008). An improved single-stage Flyback PFC converter for high-luminance lighting LED lamps. International Journal of Circuit Theory and Applications, 36(2), 205-210. doi:10.1002/cta.404 | es_ES |
dc.description.references | Chiu, H.-J., Yao, C.-J., & Lo, Y.-K. (2009). A DC/DC converter topology for renewable energy systems. International Journal of Circuit Theory and Applications, 37(3), 485-495. doi:10.1002/cta.475 | es_ES |
dc.description.references | Martins DC Demonti R Photovoltaic Energy Processing for Utility Connected System 1292 1296 10.1109/IECON.2001.975968 | es_ES |
dc.description.references | www.focus.ti.com/lit/ml/slup127/slup127.pdf | es_ES |
dc.description.references | 2003 http://www.fairchildsemi.com | es_ES |
dc.description.references | Esram, T., & Chapman, P. L. (2007). Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques. IEEE Transactions on Energy Conversion, 22(2), 439-449. doi:10.1109/tec.2006.874230 | es_ES |
dc.description.references | Liserre, M., Blaabjerg, F., & Hansen, S. (2005). Design and Control of an LCL-Filter-Based Three-Phase Active Rectifier. IEEE Transactions on Industry Applications, 41(5), 1281-1291. doi:10.1109/tia.2005.853373 | es_ES |
dc.description.references | Liserre, M., Teodorescu, R., & Blaabjerg, F. (2006). Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values. IEEE Transactions on Power Electronics, 21(1), 263-272. doi:10.1109/tpel.2005.861185 | es_ES |
dc.description.references | Figueres, E., Garcera, G., Sandia, J., Gonzalez-Espin, F., & Rubio, J. C. (2009). Sensitivity Study of the Dynamics of Three-Phase Photovoltaic Inverters With an LCL Grid Filter. IEEE Transactions on Industrial Electronics, 56(3), 706-717. doi:10.1109/tie.2008.2010175 | es_ES |
dc.description.references | Ciobotaru M Teodorescu R Blaabjerg F Control of single-stage single-phase PV inverter P.1 P.10 10.1109/EPE.2005.219501 | es_ES |
dc.description.references | Zmood, D. N., & Holmes, D. G. (2003). Stationary frame current regulation of PWM inverters with zero steady-state error. IEEE Transactions on Power Electronics, 18(3), 814-822. doi:10.1109/tpel.2003.810852 | es_ES |
dc.description.references | Castilla, M., Miret, J., Matas, J., Garcia de Vicuna, L., & Guerrero, J. M. (2009). Control Design Guidelines for Single-Phase Grid-Connected Photovoltaic Inverters With Damped Resonant Harmonic Compensators. IEEE Transactions on Industrial Electronics, 56(11), 4492-4501. doi:10.1109/tie.2009.2017820 | es_ES |
dc.description.references | Timbus A Teodorescu R Blaabjerg F Liserre M Synchronization methods for three phase distributed power generation systems 2474 2481 10.1109/PESC.2005.1581980 | es_ES |
dc.description.references | Vorperian, V. (1990). Simplified analysis of PWM converters using model of PWM switch. II. Discontinuous conduction mode. IEEE Transactions on Aerospace and Electronic Systems, 26(3), 497-505. doi:10.1109/7.106127 | es_ES |
dc.description.references | Reatti A Balzani M PWM switch model of a buck-boost converter operated under discontinuous conduction mode 667 670 10.1109/MWSCAS.2005.1594189 | es_ES |
dc.description.references | Reatti, A., & Kazimierczuk, M. K. (2003). Small-signal model of PWM converters for discontinuous conduction mode and its application for boost converter. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50(1), 65-73. doi:10.1109/tcsi.2002.805709 | es_ES |
dc.description.references | Lin, B.-R., Huang, C.-L., & Li, M.-Y. (2009). Novel interleaved ZVS converter with ripple current cancellation. International Journal of Circuit Theory and Applications, 37(3), 413-431. doi:10.1002/cta.480 | es_ES |
dc.description.references | MIDDLEBROOK, R. D. (1975). Measurement of loop gain in feedback systems†. International Journal of Electronics, 38(4), 485-512. doi:10.1080/00207217508920421 | es_ES |