- -

Dynamic modeling of DC-DC converters with peak current control in double-stage photovoltaic grid-connected inverters

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Dynamic modeling of DC-DC converters with peak current control in double-stage photovoltaic grid-connected inverters

Show simple item record

Files in this item

dc.contributor.author Garcerá Sanfeliú, Gabriel es_ES
dc.contributor.author González Medina, Raúl es_ES
dc.contributor.author Figueres Amorós, Emilio es_ES
dc.contributor.author Sandía Paredes, Jesús es_ES
dc.date.accessioned 2014-06-13T09:50:29Z
dc.date.issued 2012-08
dc.identifier.issn 0098-9886
dc.identifier.uri http://hdl.handle.net/10251/38114
dc.description.abstract In photovoltaic (PV) double-stage grid-connected inverters a high-frequency DC-DC isolation and voltage step-up stage is commonly used between the panel and the grid-connected inverter. This paper is focused on the modeling and control design of DC-DC converters with Peak Current mode Control (PCC) and an external control loop of the PV panel voltage, which works following a voltage reference provided by a maximum power point tracking (MPPT) algorithm. In the proposed overall control structure the output voltage of the DC-DC converter is regulated by the grid-connected inverter. Therefore, the inverter may be considered as a constant voltage load for the development of the small-signal model of the DC-DC converter, whereas the PV panel is considered as a negative resistance. The sensitivity of the control loops to variations of the power extracted from the PV panel and of its voltage is studied. The theoretical analysis is corroborated by frequency response measurements on a 230 W experimental inverter working from a single PV panel. The inverter is based on a Flyback DC-DC converter operating in discontinuous conduction mode (DCM) followed by a PWM full-bridge single-phase inverter. The time response of the whole system (DC-DC + inverter) is also shown to validate the concept. Copyright © 2011 John Wiley & Sons, Ltd. In photovoltaic (PV) double-stage gridconnected inverters a high-frequency DC-DC isolation and voltage step-up stage is commonly used between the panel and the grid-connected inverter. This paper is focused on the modeling and control design of DC-DC converters with Peak Current mode Control (PCC) and an external control loop of the PV panel voltage, which works following a voltage reference provided by a maximum power point tracking (MPPT) algorithm. The sensitivity of the control loops to variations of the power extracted from the PV panel and of its voltage is studied. Copyright © 2011 John Wiley & Sons, Ltd. Copyright © 2011 John Wiley & Sons, Ltd. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Science and Innovation (MICINN) under grant ENE2009-13998-C02-02. The company AUSTRIAMICROSYSTEMS co-financed this project. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation info:eu-repo/grantAgreement/MICINN//ENE2009-13998-C02-02/ES/Estructuras Flexibles De Control De Convertidores Electronicos Para Procesado E Integracion De Energias Renovables En Microrredes/ es_ES
dc.relation company AUSTRIAMICROSYSTEMS es_ES
dc.relation.ispartof International Journal of Circuit Theory and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Current mode control es_ES
dc.subject DC-DC power conversion es_ES
dc.subject Inverters es_ES
dc.subject Modeling es_ES
dc.subject Photovoltaic power systems es_ES
dc.subject Constant voltage es_ES
dc.subject Control loop es_ES
dc.subject Discontinuous conduction mode es_ES
dc.subject External control es_ES
dc.subject Flyback es_ES
dc.subject Frequency response measurement es_ES
dc.subject Full-bridge es_ES
dc.subject Grid connected inverters es_ES
dc.subject High frequency HF es_ES
dc.subject Maximum Power Point Tracking es_ES
dc.subject Modeling and control es_ES
dc.subject Output voltages es_ES
dc.subject Overall control structure es_ES
dc.subject Peak current control es_ES
dc.subject Peak current mode control es_ES
dc.subject Photovoltaic es_ES
dc.subject PV panel es_ES
dc.subject Single-phase inverters es_ES
dc.subject Small signal model es_ES
dc.subject Time response es_ES
dc.subject Voltage reference es_ES
dc.subject DC-DC converters es_ES
dc.subject Frequency response es_ES
dc.subject HVDC power transmission es_ES
dc.subject Models es_ES
dc.subject Photovoltaic cells es_ES
dc.subject Sensitivity analysis es_ES
dc.subject Electric inverters es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Dynamic modeling of DC-DC converters with peak current control in double-stage photovoltaic grid-connected inverters es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.identifier.doi 10.1002/cta.756
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Grupo de Sistemas Electrónicos Industriales es_ES
dc.description.bibliographicCitation Garcerá Sanfeliú, G.; González Medina, R.; Figueres Amorós, E.; Sandía Paredes, J. (2012). Dynamic modeling of DC-DC converters with peak current control in double-stage photovoltaic grid-connected inverters. International Journal of Circuit Theory and Applications. 40(8):793-813. https://doi.org/10.1002/cta.756 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1002/cta.756/abstract;jsessionid=64A7DB6D8CEF48D2EE19BA570A91F122.f02t03 es_ES
dc.description.upvformatpinicio 793 es_ES
dc.description.upvformatpfin 813 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 40 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 193877
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Carrasco, J. M., Franquelo, L. G., Bialasiewicz, J. T., Galvan, E., PortilloGuisado, R. C., Prats, M. A. M., … Moreno-Alfonso, N. (2006). Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey. IEEE Transactions on Industrial Electronics, 53(4), 1002-1016. doi:10.1109/tie.2006.878356 es_ES
dc.description.references Kjaer, S. B., Pedersen, J. K., & Blaabjerg, F. (2005). A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules. IEEE Transactions on Industry Applications, 41(5), 1292-1306. doi:10.1109/tia.2005.853371 es_ES
dc.description.references Ridley, R. B. (1991). A new, continuous-time model for current-mode control (power convertors). IEEE Transactions on Power Electronics, 6(2), 271-280. doi:10.1109/63.76813 es_ES
dc.description.references Femia, N., Petrone, G., Spagnuolo, G., & Vitelli, M. (2005). Optimization of Perturb and Observe Maximum Power Point Tracking Method. IEEE Transactions on Power Electronics, 20(4), 963-973. doi:10.1109/tpel.2005.850975 es_ES
dc.description.references Hua, C., & Lin, J. (2004). A modified tracking algorithm for maximum power tracking of solar array. Energy Conversion and Management, 45(6), 911-925. doi:10.1016/s0196-8904(03)00193-6 es_ES
dc.description.references Tan, Y. T., Kirschen, D. S., & Jenkins, N. (2004). A Model of PV Generation Suitable for Stability Analysis. IEEE Transactions on Energy Conversion, 19(4), 748-755. doi:10.1109/tec.2004.827707 es_ES
dc.description.references Femia, N., Petrone, G., Spagnuolo, G., & Vitelli, M. (2009). A Technique for Improving P&O MPPT Performances of Double-Stage Grid-Connected Photovoltaic Systems. IEEE Transactions on Industrial Electronics, 56(11), 4473-4482. doi:10.1109/tie.2009.2029589 es_ES
dc.description.references Chiu, H.-J., Huang, H.-M., Yang, H.-T., & Cheng, S.-J. (2008). An improved single-stage Flyback PFC converter for high-luminance lighting LED lamps. International Journal of Circuit Theory and Applications, 36(2), 205-210. doi:10.1002/cta.404 es_ES
dc.description.references Chiu, H.-J., Yao, C.-J., & Lo, Y.-K. (2009). A DC/DC converter topology for renewable energy systems. International Journal of Circuit Theory and Applications, 37(3), 485-495. doi:10.1002/cta.475 es_ES
dc.description.references Martins DC Demonti R Photovoltaic Energy Processing for Utility Connected System 1292 1296 10.1109/IECON.2001.975968 es_ES
dc.description.references www.focus.ti.com/lit/ml/slup127/slup127.pdf es_ES
dc.description.references 2003 http://www.fairchildsemi.com es_ES
dc.description.references Esram, T., & Chapman, P. L. (2007). Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques. IEEE Transactions on Energy Conversion, 22(2), 439-449. doi:10.1109/tec.2006.874230 es_ES
dc.description.references Liserre, M., Blaabjerg, F., & Hansen, S. (2005). Design and Control of an LCL-Filter-Based Three-Phase Active Rectifier. IEEE Transactions on Industry Applications, 41(5), 1281-1291. doi:10.1109/tia.2005.853373 es_ES
dc.description.references Liserre, M., Teodorescu, R., & Blaabjerg, F. (2006). Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values. IEEE Transactions on Power Electronics, 21(1), 263-272. doi:10.1109/tpel.2005.861185 es_ES
dc.description.references Figueres, E., Garcera, G., Sandia, J., Gonzalez-Espin, F., & Rubio, J. C. (2009). Sensitivity Study of the Dynamics of Three-Phase Photovoltaic Inverters With an LCL Grid Filter. IEEE Transactions on Industrial Electronics, 56(3), 706-717. doi:10.1109/tie.2008.2010175 es_ES
dc.description.references Ciobotaru M Teodorescu R Blaabjerg F Control of single-stage single-phase PV inverter P.1 P.10 10.1109/EPE.2005.219501 es_ES
dc.description.references Zmood, D. N., & Holmes, D. G. (2003). Stationary frame current regulation of PWM inverters with zero steady-state error. IEEE Transactions on Power Electronics, 18(3), 814-822. doi:10.1109/tpel.2003.810852 es_ES
dc.description.references Castilla, M., Miret, J., Matas, J., Garcia de Vicuna, L., & Guerrero, J. M. (2009). Control Design Guidelines for Single-Phase Grid-Connected Photovoltaic Inverters With Damped Resonant Harmonic Compensators. IEEE Transactions on Industrial Electronics, 56(11), 4492-4501. doi:10.1109/tie.2009.2017820 es_ES
dc.description.references Timbus A Teodorescu R Blaabjerg F Liserre M Synchronization methods for three phase distributed power generation systems 2474 2481 10.1109/PESC.2005.1581980 es_ES
dc.description.references Vorperian, V. (1990). Simplified analysis of PWM converters using model of PWM switch. II. Discontinuous conduction mode. IEEE Transactions on Aerospace and Electronic Systems, 26(3), 497-505. doi:10.1109/7.106127 es_ES
dc.description.references Reatti A Balzani M PWM switch model of a buck-boost converter operated under discontinuous conduction mode 667 670 10.1109/MWSCAS.2005.1594189 es_ES
dc.description.references Reatti, A., & Kazimierczuk, M. K. (2003). Small-signal model of PWM converters for discontinuous conduction mode and its application for boost converter. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50(1), 65-73. doi:10.1109/tcsi.2002.805709 es_ES
dc.description.references Lin, B.-R., Huang, C.-L., & Li, M.-Y. (2009). Novel interleaved ZVS converter with ripple current cancellation. International Journal of Circuit Theory and Applications, 37(3), 413-431. doi:10.1002/cta.480 es_ES
dc.description.references MIDDLEBROOK, R. D. (1975). Measurement of loop gain in feedback systems†. International Journal of Electronics, 38(4), 485-512. doi:10.1080/00207217508920421 es_ES


This item appears in the following Collection(s)

Show simple item record