- -

A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez, Gerardo es_ES
dc.contributor.author Besada Ferreiro, Cristina María es_ES
dc.contributor.author Badenes, María Luisa es_ES
dc.contributor.author Monforte Gilabert, Antonio José es_ES
dc.contributor.author Granell Richart, Antonio es_ES
dc.date.accessioned 2014-07-16T09:29:28Z
dc.date.available 2014-07-16T09:29:28Z
dc.date.issued 2012-06
dc.identifier.issn 1932-6203
dc.identifier.uri http://hdl.handle.net/10251/38841
dc.description.abstract [EN] Volatile compounds represent an important part of the plant metabolome and are of particular agronomic and biological interest due to their contribution to fruit aroma and flavor and therefore to fruit quality. By using a non-targeted approach based on HS-SPME-GC-MS, the volatile-compound complement of peach fruit was described. A total of 110 volatile compounds (including alcohols, ketones, aldehydes, esters, lactones, carboxylic acids, phenolics and terpenoids) were identified and quantified in peach fruit samples from different genetic backgrounds, locations, maturity stages and physiological responses. By using a combination of hierarchical cluster analysis and metabolomic correlation network analysis we found that previously known peach fruit volatiles are clustered according to their chemical nature or known biosynthetic pathways. Moreover, novel volatiles that had not yet been described in peach were identified and assigned to co-regulated groups. In addition, our analyses showed that most of the co-regulated groups showed good intergroup correlations that are therefore consistent with the existence of a higher level of regulation orchestrating volatile production under different conditions and/or developmental stages. In addition, this volatile network of interactions provides the ground information for future biochemical studies as well as a useful route map for breeding or biotechnological purposes. es_ES
dc.description.sponsorship GS has financial support from INTA (Instituto Nacional de Tecnologia Agropecuaria). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Metabolomic networks es_ES
dc.subject Nectarines es_ES
dc.subject Identification es_ES
dc.subject Quality es_ES
dc.subject Biosynthesis es_ES
dc.subject Constituents es_ES
dc.subject Spectrometry es_ES
dc.subject Metabolites es_ES
dc.subject Maturation es_ES
dc.subject Consumer es_ES
dc.title A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0038992
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Sanchez, G.; Besada Ferreiro, CM.; Badenes, ML.; Monforte Gilabert, AJ.; Granell Richart, A. (2012). A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit. PLoS ONE. 7:40526-40526. doi:10.1371/journal.pone.0038992 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1371/journal.pone.0038992 es_ES
dc.description.upvformatpinicio 40526 es_ES
dc.description.upvformatpfin 40526 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.relation.senia 232563
dc.identifier.pmid 22761719 en_EN
dc.identifier.pmcid PMC3382205 en_EN
dc.contributor.funder Instituto Nacional de Tecnologia Agropecuaria
dc.description.references BRUHN, C. M., FELDMAN, N., GARLITZ, C., HARWOOD, J., IVANS, E., MARSHALL, M., … WILLIAMSON, E. (1991). CONSUMER PERCEPTIONS OF QUALITY: APRICOTS, CANTALOUPES, PEACHES, PEARS, STRAWBERRIES, AND TOMATOES. Journal of Food Quality, 14(3), 187-195. doi:10.1111/j.1745-4557.1991.tb00060.x es_ES
dc.description.references BRUHN, C. M. (1995). CONSUMER AND RETAILER SATISFACTION WITH THE QUALITY AND SIZE OF CALIFORNIA PEACHES AND NECTARINES. Journal of Food Quality, 18(3), 241-256. doi:10.1111/j.1745-4557.1995.tb00378.x es_ES
dc.description.references Wang, Y., Yang, C., Li, S., Yang, L., Wang, Y., Zhao, J., & Jiang, Q. (2009). Volatile characteristics of 50 peaches and nectarines evaluated by HP–SPME with GC–MS. Food Chemistry, 116(1), 356-364. doi:10.1016/j.foodchem.2009.02.004 es_ES
dc.description.references Horvat, R. J., Chapman, G. W., Robertson, J. A., Meredith, F. I., Scorza, R., Callahan, A. M., & Morgens, P. (1990). Comparison of the volatile compounds from several commercial peach cultivars. Journal of Agricultural and Food Chemistry, 38(1), 234-237. doi:10.1021/jf00091a051 es_ES
dc.description.references Derail, C., Hofmann, T., & Schieberle, P. (1999). Differences in Key Odorants of Handmade Juice of Yellow-Flesh Peaches (Prunus persicaL.) Induced by the Workup Procedure. Journal of Agricultural and Food Chemistry, 47(11), 4742-4745. doi:10.1021/jf990459g es_ES
dc.description.references Aubert, C., & Milhet, C. (2007). Distribution of the volatile compounds in the different parts of a white-fleshed peach (Prunus persica L. Batsch). Food Chemistry, 102(1), 375-384. doi:10.1016/j.foodchem.2006.05.030 es_ES
dc.description.references Zhang, B., Shen, J., Wei, W., Xi, W., Xu, C.-J., Ferguson, I., & Chen, K. (2010). Expression of Genes Associated with Aroma Formation Derived from the Fatty Acid Pathway during Peach Fruit Ripening. Journal of Agricultural and Food Chemistry, 58(10), 6157-6165. doi:10.1021/jf100172e es_ES
dc.description.references Eduardo, I., Chietera, G., Bassi, D., Rossini, L., & Vecchietti, A. (2010). Identification of key odor volatile compounds in the essential oil of nine peach accessions. Journal of the Science of Food and Agriculture, 90(7), 1146-1154. doi:10.1002/jsfa.3932 es_ES
dc.description.references Chapman, G. W., Horvat, R. J., & Forbus, W. R. (1991). Physical and chemical changes during the maturation of peaches (cv. Majestic). Journal of Agricultural and Food Chemistry, 39(5), 867-870. doi:10.1021/jf00005a010 es_ES
dc.description.references Visai, C., & Vanoli, M. (1997). Volatile compound production during growth and ripening of peaches and nectarines. Scientia Horticulturae, 70(1), 15-24. doi:10.1016/s0304-4238(97)00032-0 es_ES
dc.description.references Aubert, C., Günata, Z., Ambid, C., & Baumes, R. (2003). Changes in Physicochemical Characteristics and Volatile Constituents of Yellow- and White-Fleshed Nectarines during Maturation and Artificial Ripening. Journal of Agricultural and Food Chemistry, 51(10), 3083-3091. doi:10.1021/jf026153i es_ES
dc.description.references Robertson, J. A., Meredith, F. I., Horvat, R. J., & Senter, S. D. (1990). Effect of cold storage and maturity on the physical and chemical characteristics and volatile constituents of peaches (cv. Cresthaven). Journal of Agricultural and Food Chemistry, 38(3), 620-624. doi:10.1021/jf00093a008 es_ES
dc.description.references Sumitani, H., Suekane, S., Nakatani, A., & Tatsuka, K. (1994). Changes In Composition of Volatile Compounds in High Pressure Treated Peach. Journal of Agricultural and Food Chemistry, 42(3), 785-790. doi:10.1021/jf00039a037 es_ES
dc.description.references Jia, H.-J., Araki, A., & Okamoto, G. (2005). Influence of fruit bagging on aroma volatiles and skin coloration of ‘Hakuho’ peach (Prunus persica Batsch). Postharvest Biology and Technology, 35(1), 61-68. doi:10.1016/j.postharvbio.2004.06.004 es_ES
dc.description.references Morgenthal, K., Weckwerth, W., & Steuer, R. (2006). Metabolomic networks in plants: Transitions from pattern recognition to biological interpretation. Biosystems, 83(2-3), 108-117. doi:10.1016/j.biosystems.2005.05.017 es_ES
dc.description.references Steuer, R., Kurths, J., Fiehn, O., & Weckwerth, W. (2003). Observing and interpreting correlations in metabolomic networks. Bioinformatics, 19(8), 1019-1026. doi:10.1093/bioinformatics/btg120 es_ES
dc.description.references Camacho, D., de la Fuente, A., & Mendes, P. (2005). The origin of correlations in metabolomics data. Metabolomics, 1(1), 53-63. doi:10.1007/s11306-005-1107-3 es_ES
dc.description.references Steuer, R. (2006). Review: On the analysis and interpretation of correlations in metabolomic data. Briefings in Bioinformatics, 7(2), 151-158. doi:10.1093/bib/bbl009 es_ES
dc.description.references Tikunov, Y., Lommen, A., de Vos, C. H. R., Verhoeven, H. A., Bino, R. J., Hall, R. D., & Bovy, A. G. (2005). A Novel Approach for Nontargeted Data Analysis for Metabolomics. Large-Scale Profiling of Tomato Fruit Volatiles. Plant Physiology, 139(3), 1125-1137. doi:10.1104/pp.105.068130 es_ES
dc.description.references Ursem, R., Tikunov, Y., Bovy, A., van Berloo, R., & van Eeuwijk, F. (2008). A correlation network approach to metabolic data analysis for tomato fruits. Euphytica, 161(1-2), 181-193. doi:10.1007/s10681-008-9672-y es_ES
dc.description.references Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086 es_ES
dc.description.references Moing, A., Aharoni, A., Biais, B., Rogachev, I., Meir, S., Brodsky, L., … Hall, R. D. (2011). Extensive metabolic cross-talk in melon fruit revealed by spatial and developmental combinatorial metabolomics. New Phytologist, 190(3), 683-696. doi:10.1111/j.1469-8137.2010.03626.x es_ES
dc.description.references ESTree Consortium. (2005). DEVELOPMENT OF AN OLIGO-BASED MICROARRAY (µPEACH 1.0) FOR GENOMICS STUDIES IN PEACH FRUIT. Acta Horticulturae, (682), 263-268. doi:10.17660/actahortic.2005.682.28 es_ES
dc.description.references Ogundiwin, E. A., Martí, C., Forment, J., Pons, C., Granell, A., Gradziel, T. M., … Crisosto, C. H. (2008). Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Molecular Biology, 68(4-5), 379-397. doi:10.1007/s11103-008-9378-5 es_ES
dc.description.references Spolaore, S., Trainotti, L., & Casadoro, G. (2001). A simple protocol for transient gene expression in ripe fleshy fruit mediated by Agrobacterium. Journal of Experimental Botany, 52(357), 845-850. doi:10.1093/jexbot/52.357.845 es_ES
dc.description.references Stein, S. E. (1999). An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. Journal of the American Society for Mass Spectrometry, 10(8), 770-781. doi:10.1016/s1044-0305(99)00047-1 es_ES
dc.description.references Shannon, P. (2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13(11), 2498-2504. doi:10.1101/gr.1239303 es_ES
dc.description.references Pesis, E. (2005). The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biology and Technology, 37(1), 1-19. doi:10.1016/j.postharvbio.2005.03.001 es_ES
dc.description.references Gomez, E., Ledbetter, C. A., & Hartsell, P. L. (1993). Volatile compounds in apricot, plum, and their interspecific hybrids. Journal of Agricultural and Food Chemistry, 41(10), 1669-1676. doi:10.1021/jf00034a029 es_ES
dc.description.references Hall, R. D. (2006). Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytologist, 169(3), 453-468. doi:10.1111/j.1469-8137.2005.01632.x es_ES
dc.description.references González-Mas, M. C., Rambla, J. L., Alamar, M. C., Gutiérrez, A., & Granell, A. (2011). Comparative Analysis of the Volatile Fraction of Fruit Juice from Different Citrus Species. PLoS ONE, 6(7), e22016. doi:10.1371/journal.pone.0022016 es_ES
dc.description.references Müller-Linow, M., Weckwerth, W., & Hütt, M.-T. (2007). Consistency analysis of metabolic correlation networks. BMC Systems Biology, 1(1). doi:10.1186/1752-0509-1-44 es_ES
dc.description.references GUILLOT, S., PEYTAVI, L., BUREAU, S., BOULANGER, R., LEPOUTRE, J., CROUZET, J., & SCHORRGALINDO, S. (2006). Aroma characterization of various apricot varieties using headspace–solid phase microextraction combined with gas chromatography–mass spectrometry and gas chromatography–olfactometry. Food Chemistry, 96(1), 147-155. doi:10.1016/j.foodchem.2005.04.016 es_ES
dc.description.references Schwab, W., Davidovich-Rikanati, R., & Lewinsohn, E. (2008). Biosynthesis of plant-derived flavor compounds. The Plant Journal, 54(4), 712-732. doi:10.1111/j.1365-313x.2008.03446.x es_ES
dc.description.references Schöttler, M., & Boland, W. (1996). Biosynthesis of Dodecano-4-lactone in Ripening Fruits: Crucial Role of an Epoxide-Hydrolase in Enantioselective Generation of Aroma Components of the Nectarine (Prunus persicavar.nucipersica) and the Strawberry (Fragaria ananassa). Helvetica Chimica Acta, 79(5), 1488-1496. doi:10.1002/hlca.19960790521 es_ES
dc.description.references XI, W.-P., ZHANG, B., LIANG, L., SHEN, J.-Y., WEI, W.-W., XU, C.-J., … CHEN, K.-S. (2011). Postharvest temperature influences volatile lactone production via regulation of acyl-CoA oxidases in peach fruit. Plant, Cell & Environment, 35(3), 534-545. doi:10.1111/j.1365-3040.2011.02433.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem