- -

A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit

Mostrar el registro completo del ítem

Sanchez, G.; Besada Ferreiro, CM.; Badenes, ML.; Monforte Gilabert, AJ.; Granell Richart, A. (2012). A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit. PLoS ONE. 7:40526-40526. doi:10.1371/journal.pone.0038992

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/38841

Ficheros en el ítem

Metadatos del ítem

Título: A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit
Autor: Sánchez, Gerardo Besada Ferreiro, Cristina María Badenes, María Luisa Monforte Gilabert, Antonio José Granell Richart, Antonio
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Volatile compounds represent an important part of the plant metabolome and are of particular agronomic and biological interest due to their contribution to fruit aroma and flavor and therefore to fruit quality. By ...[+]
Palabras clave: Metabolomic networks , Nectarines , Identification , Quality , Biosynthesis , Constituents , Spectrometry , Metabolites , Maturation , Consumer
Derechos de uso: Reconocimiento (by)
Fuente:
PLoS ONE. (issn: 1932-6203 )
DOI: 10.1371/journal.pone.0038992
Editorial:
Public Library of Science
Versión del editor: http://dx.doi.org/10.1371/journal.pone.0038992
Agradecimientos:
GS has financial support from INTA (Instituto Nacional de Tecnologia Agropecuaria). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Tipo: Artículo

References

BRUHN, C. M., FELDMAN, N., GARLITZ, C., HARWOOD, J., IVANS, E., MARSHALL, M., … WILLIAMSON, E. (1991). CONSUMER PERCEPTIONS OF QUALITY: APRICOTS, CANTALOUPES, PEACHES, PEARS, STRAWBERRIES, AND TOMATOES. Journal of Food Quality, 14(3), 187-195. doi:10.1111/j.1745-4557.1991.tb00060.x

BRUHN, C. M. (1995). CONSUMER AND RETAILER SATISFACTION WITH THE QUALITY AND SIZE OF CALIFORNIA PEACHES AND NECTARINES. Journal of Food Quality, 18(3), 241-256. doi:10.1111/j.1745-4557.1995.tb00378.x

Wang, Y., Yang, C., Li, S., Yang, L., Wang, Y., Zhao, J., & Jiang, Q. (2009). Volatile characteristics of 50 peaches and nectarines evaluated by HP–SPME with GC–MS. Food Chemistry, 116(1), 356-364. doi:10.1016/j.foodchem.2009.02.004 [+]
BRUHN, C. M., FELDMAN, N., GARLITZ, C., HARWOOD, J., IVANS, E., MARSHALL, M., … WILLIAMSON, E. (1991). CONSUMER PERCEPTIONS OF QUALITY: APRICOTS, CANTALOUPES, PEACHES, PEARS, STRAWBERRIES, AND TOMATOES. Journal of Food Quality, 14(3), 187-195. doi:10.1111/j.1745-4557.1991.tb00060.x

BRUHN, C. M. (1995). CONSUMER AND RETAILER SATISFACTION WITH THE QUALITY AND SIZE OF CALIFORNIA PEACHES AND NECTARINES. Journal of Food Quality, 18(3), 241-256. doi:10.1111/j.1745-4557.1995.tb00378.x

Wang, Y., Yang, C., Li, S., Yang, L., Wang, Y., Zhao, J., & Jiang, Q. (2009). Volatile characteristics of 50 peaches and nectarines evaluated by HP–SPME with GC–MS. Food Chemistry, 116(1), 356-364. doi:10.1016/j.foodchem.2009.02.004

Horvat, R. J., Chapman, G. W., Robertson, J. A., Meredith, F. I., Scorza, R., Callahan, A. M., & Morgens, P. (1990). Comparison of the volatile compounds from several commercial peach cultivars. Journal of Agricultural and Food Chemistry, 38(1), 234-237. doi:10.1021/jf00091a051

Derail, C., Hofmann, T., & Schieberle, P. (1999). Differences in Key Odorants of Handmade Juice of Yellow-Flesh Peaches (Prunus persicaL.) Induced by the Workup Procedure. Journal of Agricultural and Food Chemistry, 47(11), 4742-4745. doi:10.1021/jf990459g

Aubert, C., & Milhet, C. (2007). Distribution of the volatile compounds in the different parts of a white-fleshed peach (Prunus persica L. Batsch). Food Chemistry, 102(1), 375-384. doi:10.1016/j.foodchem.2006.05.030

Zhang, B., Shen, J., Wei, W., Xi, W., Xu, C.-J., Ferguson, I., & Chen, K. (2010). Expression of Genes Associated with Aroma Formation Derived from the Fatty Acid Pathway during Peach Fruit Ripening. Journal of Agricultural and Food Chemistry, 58(10), 6157-6165. doi:10.1021/jf100172e

Eduardo, I., Chietera, G., Bassi, D., Rossini, L., & Vecchietti, A. (2010). Identification of key odor volatile compounds in the essential oil of nine peach accessions. Journal of the Science of Food and Agriculture, 90(7), 1146-1154. doi:10.1002/jsfa.3932

Chapman, G. W., Horvat, R. J., & Forbus, W. R. (1991). Physical and chemical changes during the maturation of peaches (cv. Majestic). Journal of Agricultural and Food Chemistry, 39(5), 867-870. doi:10.1021/jf00005a010

Visai, C., & Vanoli, M. (1997). Volatile compound production during growth and ripening of peaches and nectarines. Scientia Horticulturae, 70(1), 15-24. doi:10.1016/s0304-4238(97)00032-0

Aubert, C., Günata, Z., Ambid, C., & Baumes, R. (2003). Changes in Physicochemical Characteristics and Volatile Constituents of Yellow- and White-Fleshed Nectarines during Maturation and Artificial Ripening. Journal of Agricultural and Food Chemistry, 51(10), 3083-3091. doi:10.1021/jf026153i

Robertson, J. A., Meredith, F. I., Horvat, R. J., & Senter, S. D. (1990). Effect of cold storage and maturity on the physical and chemical characteristics and volatile constituents of peaches (cv. Cresthaven). Journal of Agricultural and Food Chemistry, 38(3), 620-624. doi:10.1021/jf00093a008

Sumitani, H., Suekane, S., Nakatani, A., & Tatsuka, K. (1994). Changes In Composition of Volatile Compounds in High Pressure Treated Peach. Journal of Agricultural and Food Chemistry, 42(3), 785-790. doi:10.1021/jf00039a037

Jia, H.-J., Araki, A., & Okamoto, G. (2005). Influence of fruit bagging on aroma volatiles and skin coloration of ‘Hakuho’ peach (Prunus persica Batsch). Postharvest Biology and Technology, 35(1), 61-68. doi:10.1016/j.postharvbio.2004.06.004

Morgenthal, K., Weckwerth, W., & Steuer, R. (2006). Metabolomic networks in plants: Transitions from pattern recognition to biological interpretation. Biosystems, 83(2-3), 108-117. doi:10.1016/j.biosystems.2005.05.017

Steuer, R., Kurths, J., Fiehn, O., & Weckwerth, W. (2003). Observing and interpreting correlations in metabolomic networks. Bioinformatics, 19(8), 1019-1026. doi:10.1093/bioinformatics/btg120

Camacho, D., de la Fuente, A., & Mendes, P. (2005). The origin of correlations in metabolomics data. Metabolomics, 1(1), 53-63. doi:10.1007/s11306-005-1107-3

Steuer, R. (2006). Review: On the analysis and interpretation of correlations in metabolomic data. Briefings in Bioinformatics, 7(2), 151-158. doi:10.1093/bib/bbl009

Tikunov, Y., Lommen, A., de Vos, C. H. R., Verhoeven, H. A., Bino, R. J., Hall, R. D., & Bovy, A. G. (2005). A Novel Approach for Nontargeted Data Analysis for Metabolomics. Large-Scale Profiling of Tomato Fruit Volatiles. Plant Physiology, 139(3), 1125-1137. doi:10.1104/pp.105.068130

Ursem, R., Tikunov, Y., Bovy, A., van Berloo, R., & van Eeuwijk, F. (2008). A correlation network approach to metabolic data analysis for tomato fruits. Euphytica, 161(1-2), 181-193. doi:10.1007/s10681-008-9672-y

Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086

Moing, A., Aharoni, A., Biais, B., Rogachev, I., Meir, S., Brodsky, L., … Hall, R. D. (2011). Extensive metabolic cross-talk in melon fruit revealed by spatial and developmental combinatorial metabolomics. New Phytologist, 190(3), 683-696. doi:10.1111/j.1469-8137.2010.03626.x

ESTree Consortium. (2005). DEVELOPMENT OF AN OLIGO-BASED MICROARRAY (µPEACH 1.0) FOR GENOMICS STUDIES IN PEACH FRUIT. Acta Horticulturae, (682), 263-268. doi:10.17660/actahortic.2005.682.28

Ogundiwin, E. A., Martí, C., Forment, J., Pons, C., Granell, A., Gradziel, T. M., … Crisosto, C. H. (2008). Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Molecular Biology, 68(4-5), 379-397. doi:10.1007/s11103-008-9378-5

Spolaore, S., Trainotti, L., & Casadoro, G. (2001). A simple protocol for transient gene expression in ripe fleshy fruit mediated by Agrobacterium. Journal of Experimental Botany, 52(357), 845-850. doi:10.1093/jexbot/52.357.845

Stein, S. E. (1999). An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. Journal of the American Society for Mass Spectrometry, 10(8), 770-781. doi:10.1016/s1044-0305(99)00047-1

Shannon, P. (2003). Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13(11), 2498-2504. doi:10.1101/gr.1239303

Pesis, E. (2005). The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biology and Technology, 37(1), 1-19. doi:10.1016/j.postharvbio.2005.03.001

Gomez, E., Ledbetter, C. A., & Hartsell, P. L. (1993). Volatile compounds in apricot, plum, and their interspecific hybrids. Journal of Agricultural and Food Chemistry, 41(10), 1669-1676. doi:10.1021/jf00034a029

Hall, R. D. (2006). Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytologist, 169(3), 453-468. doi:10.1111/j.1469-8137.2005.01632.x

González-Mas, M. C., Rambla, J. L., Alamar, M. C., Gutiérrez, A., & Granell, A. (2011). Comparative Analysis of the Volatile Fraction of Fruit Juice from Different Citrus Species. PLoS ONE, 6(7), e22016. doi:10.1371/journal.pone.0022016

Müller-Linow, M., Weckwerth, W., & Hütt, M.-T. (2007). Consistency analysis of metabolic correlation networks. BMC Systems Biology, 1(1). doi:10.1186/1752-0509-1-44

GUILLOT, S., PEYTAVI, L., BUREAU, S., BOULANGER, R., LEPOUTRE, J., CROUZET, J., & SCHORRGALINDO, S. (2006). Aroma characterization of various apricot varieties using headspace–solid phase microextraction combined with gas chromatography–mass spectrometry and gas chromatography–olfactometry. Food Chemistry, 96(1), 147-155. doi:10.1016/j.foodchem.2005.04.016

Schwab, W., Davidovich-Rikanati, R., & Lewinsohn, E. (2008). Biosynthesis of plant-derived flavor compounds. The Plant Journal, 54(4), 712-732. doi:10.1111/j.1365-313x.2008.03446.x

Schöttler, M., & Boland, W. (1996). Biosynthesis of Dodecano-4-lactone in Ripening Fruits: Crucial Role of an Epoxide-Hydrolase in Enantioselective Generation of Aroma Components of the Nectarine (Prunus persicavar.nucipersica) and the Strawberry (Fragaria ananassa). Helvetica Chimica Acta, 79(5), 1488-1496. doi:10.1002/hlca.19960790521

XI, W.-P., ZHANG, B., LIANG, L., SHEN, J.-Y., WEI, W.-W., XU, C.-J., … CHEN, K.-S. (2011). Postharvest temperature influences volatile lactone production via regulation of acyl-CoA oxidases in peach fruit. Plant, Cell & Environment, 35(3), 534-545. doi:10.1111/j.1365-3040.2011.02433.x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem