dc.contributor.author |
Adolfo Ballester-Bolinches
|
es_ES |
dc.contributor.author |
Cosme-Llópez, Enric
|
es_ES |
dc.contributor.author |
Esteban Romero, Ramón
|
es_ES |
dc.date.accessioned |
2014-07-28T09:59:34Z |
|
dc.date.available |
2014-07-28T09:59:34Z |
|
dc.date.issued |
2013-08 |
|
dc.identifier.issn |
1895-1074 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/39083 |
|
dc.description.abstract |
In this paper we describe some algorithms to identify permutable and Sylow-permutable subgroups of finite groups, Dedekind and Iwasawa finite groups, and finite T-groups (groups in which normality is transitive), PT-groups (groups in which permutability is transitive), and PST-groups (groups in which Sylow permutability is transitive). These algorithms have been implemented in a package for the computer algebra system GAP. |
es_ES |
dc.description.sponsorship |
This work has been supported by the grant MTM2010-19938-C03-01 (Ministerio de Ciencia e Innovacion, Spain). The first author has also been supported by a project of the National Natural Science Foundation of China (11271085). The third author has been supported by the predoctoral grant AP2010-2764 (Programa FPU, Ministerio de Educacion, Spain). |
en_EN |
dc.language |
Inglés |
es_ES |
dc.publisher |
Springer Verlag (Germany) |
es_ES |
dc.relation.ispartof |
Central European Journal of Mathematics |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Finite group: Permutable subgroup |
es_ES |
dc.subject |
S-permutable subgroup |
es_ES |
dc.subject |
Dedekind group |
es_ES |
dc.subject |
Iwasawa group |
es_ES |
dc.subject |
T-group |
es_ES |
dc.subject |
PT-group |
es_ES |
dc.subject |
PST-group |
es_ES |
dc.subject |
Algorithm |
es_ES |
dc.subject.classification |
MATEMATICA APLICADA |
es_ES |
dc.title |
Algorithms for permutability in finite groups |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.2478/s11533-013-0299-4 |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/MICINN//MTM2010-19938-C03-01/ES/PROPIEDADES ARITMETICAS Y ESTRUCTURALES DE LOS GRUPOS. APLICACIONES I/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/NSFC//11271085/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/ME//AP2010-2764/ES/AP2010-2764/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada |
es_ES |
dc.description.bibliographicCitation |
Adolfo Ballester-Bolinches; Cosme-Llópez, E.; Esteban Romero, R. (2013). Algorithms for permutability in finite groups. Central European Journal of Mathematics. 11(11):1914-1922. https://doi.org/10.2478/s11533-013-0299-4 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://dx.doi.org/10.2478/s11533-013-0299-4 |
es_ES |
dc.description.upvformatpinicio |
1914 |
es_ES |
dc.description.upvformatpfin |
1922 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
11 |
es_ES |
dc.description.issue |
11 |
es_ES |
dc.relation.senia |
232373 |
|
dc.contributor.funder |
Ministerio de Ciencia e Innovación |
es_ES |
dc.contributor.funder |
National Natural Science Foundation of China |
es_ES |
dc.contributor.funder |
Ministerio de Educación |
es_ES |
dc.description.references |
Ballester-Bolinches A., Beidleman J.C., Cossey J., Esteban-Romero R., Ragland M.F., Schmidt J., Permutable subnormal subgroups of finite groups, Arch. Math. (Basel), 2009, 92(6), 549–557 |
es_ES |
dc.description.references |
Ballester-Bolinches A., Beidleman J.C., Heineken H., Groups in which Sylow subgroups and subnormal subgroups permute, Illinois J. Math., 2003, 47(1–2), 63–69 |
es_ES |
dc.description.references |
Ballester-Bolinches A., Beidleman J.C., Heineken H., A local approach to certain classes of finite groups, Comm. Algebra, 2003, 31(12), 5931–5942 |
es_ES |
dc.description.references |
Ballester-Bolinches A., Cosme-Llópez E., Esteban-Romero R., Permut: A GAP4 package to deal with permutability, v. 0.03, available at http://personales.upv.es/_resteban/gap/permut-0.03/ |
es_ES |
dc.description.references |
Ballester-Bolinches A., Esteban-Romero R., Sylow permutable subnormal subgroups of finite groups, J. Algebra, 2002, 251(2), 727–738 |
es_ES |
dc.description.references |
Ballester-Bolinches A., Esteban-Romero R., Asaad M., Products of Finite Groups, de Gruyter Exp. Math., 53, Walter de Gruyter, Berlin, 2010 |
es_ES |
dc.description.references |
Ballester-Bolinches A., Esteban-Romero R., Ragland M., A note on finite PST-groups, J. Group Theory, 2007, 10(2), 205–210 |
es_ES |
dc.description.references |
Ballester-Bolinches A., Esteban-Romero R., Ragland M., Corrigendum: A note on finite PST-groups, J. Group Theory, 2009, 12(6), 961–963 |
es_ES |
dc.description.references |
Beidleman J.C., Brewster B., Robinson D.J.S., Criteria for permutability to be transitive in finite groups, J. Algebra, 1999, 222(2), 400–412 |
es_ES |
dc.description.references |
Beidleman J.C., Heineken H., Finite soluble groups whose subnormal subgroups permute with certain classes of subgroups, J. Group Theory, 2003, 6(2), 139–158 |
es_ES |
dc.description.references |
Huppert B., Endliche Gruppen I, Grundlehren Math. Wiss., 134, Springer, Berlin-Heidelberg-New York, 1967 |
es_ES |
dc.description.references |
Maier R., Schmid P., The embedding of quasinormal subgroups in finite groups, Math. Z., 1973, 131(3), 269–272 |
es_ES |
dc.description.references |
Robinson D.J.S., A note on finite groups in which normality is transitive, Proc. Amer. Math. Soc., 1968, 19(4), 933–937 |
es_ES |
dc.description.references |
Schmid P., Subgroups permutable with all Sylow subgroups, J. Algebra, 1998, 207(1), 285–293 |
es_ES |
dc.description.references |
Schmidt R., Subgroup Lattices of Groups, de Gruyter Exp. Math., 14, Walter de Gruyter, Berlin, 1994 |
es_ES |
dc.description.references |
The GAP Group, GAP — Groups, Algorithms, Programming, v. 4.5.7, 2012 |
es_ES |