- -

Crocins with high levels of sugar conjugation contribute to the yellow colours of early-spring flowering

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Crocins with high levels of sugar conjugation contribute to the yellow colours of early-spring flowering

Mostrar el registro completo del ítem

Rubio-Moraga, A.; Ahrazem, O.; Rambla Nebot, JL.; Granell Richart, A.; Gómez Gómez, L. (2013). Crocins with high levels of sugar conjugation contribute to the yellow colours of early-spring flowering. PLoS ONE. 8(9):71946-71946. https://doi.org/10.1371/journal.pone.0071946

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/39273

Ficheros en el ítem

Metadatos del ítem

Título: Crocins with high levels of sugar conjugation contribute to the yellow colours of early-spring flowering
Autor: Rubio-Moraga, A. Ahrazem, Oussama Rambla Nebot, Jose Luis Granell Richart, Antonio Gómez Gómez, Lourdes
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
Crocus sativus is the source of saffron spice, the processed stigma which accumulates glucosylated apocarotenoids known as crocins. Crocins are found in the stigmas of other Crocuses, determining the colourations observed ...[+]
Palabras clave: Carotenoid cleavage dioxygenase , Boronia-megastigma nees , Mycorrhizal roots , Sativus stigmas , C-27 apocarotenoids , Gene-expression , In-vitro , Saffron , Accumulation , Crocetin
Derechos de uso: Reconocimiento (by)
Fuente:
PLoS ONE. (issn: 1932-6203 )
DOI: 10.1371/journal.pone.0071946
Editorial:
Public Library of Science
Versión del editor: http://dx.doi.org/10.1371/journal.pone.0071946
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//BIO2009-07803/ES/Glucosiltransferasas Y Glucosidasas (Cazy Enzymes) De Flavonoides Y Apocarotenoides De Crocus Sativus/
Agradecimientos:
The laboratory is supported by the Spanish Ministerio de Ciencia e Innovacion (BIO2009-07803) and participates in the IBERCAROT network (112RT0445). Dr. Ahrazem was funded by FPCYTA through the INCRECYT Programme. The ...[+]
Tipo: Artículo

References

Auldridge, M. E., McCarty, D. R., & Klee, H. J. (2006). Plant carotenoid cleavage oxygenases and their apocarotenoid products. Current Opinion in Plant Biology, 9(3), 315-321. doi:10.1016/j.pbi.2006.03.005

AKIYAMA, K. (2007). Chemical Identification and Functional Analysis of Apocarotenoids Involved in the Development of Arbuscular Mycorrhizal Symbiosis. Bioscience, Biotechnology, and Biochemistry, 71(6), 1405-1414. doi:10.1271/bbb.70023

Lendzemo, V. W., Kuyper, T. W., Matusova, R., Bouwmeester, H. J., & Ast, A. V. (2007). Colonization by Arbuscular Mycorrhizal Fungi of Sorghum Leads to Reduced Germination and Subsequent Attachment and Emergence ofStriga hermonthica. Plant Signaling & Behavior, 2(1), 58-62. doi:10.4161/psb.2.1.3884 [+]
Auldridge, M. E., McCarty, D. R., & Klee, H. J. (2006). Plant carotenoid cleavage oxygenases and their apocarotenoid products. Current Opinion in Plant Biology, 9(3), 315-321. doi:10.1016/j.pbi.2006.03.005

AKIYAMA, K. (2007). Chemical Identification and Functional Analysis of Apocarotenoids Involved in the Development of Arbuscular Mycorrhizal Symbiosis. Bioscience, Biotechnology, and Biochemistry, 71(6), 1405-1414. doi:10.1271/bbb.70023

Lendzemo, V. W., Kuyper, T. W., Matusova, R., Bouwmeester, H. J., & Ast, A. V. (2007). Colonization by Arbuscular Mycorrhizal Fungi of Sorghum Leads to Reduced Germination and Subsequent Attachment and Emergence ofStriga hermonthica. Plant Signaling & Behavior, 2(1), 58-62. doi:10.4161/psb.2.1.3884

Gomez-Roldan, V., Fermas, S., Brewer, P. B., Puech-Pagès, V., Dun, E. A., Pillot, J.-P., … Rochange, S. F. (2008). Strigolactone inhibition of shoot branching. Nature, 455(7210), 189-194. doi:10.1038/nature07271

Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., … Yamaguchi, S. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455(7210), 195-200. doi:10.1038/nature07272

Jella, P., Rouseff, R., Goodner, K., & Widmer, W. (1998). Determination of Key Flavor Components in Methylene Chloride Extracts from Processed Grapefruit Juice. Journal of Agricultural and Food Chemistry, 46(1), 242-247. doi:10.1021/jf9702149

Pfander, H., & Schurtenberger, H. (1982). Biosynthesis of C20-carotenoids in Crocus sativus. Phytochemistry, 21(5), 1039-1042. doi:10.1016/s0031-9422(00)82412-7

Bathaie, S. Z., & Mousavi, S. Z. (2010). New Applications and Mechanisms of Action of Saffron and its Important Ingredients. Critical Reviews in Food Science and Nutrition, 50(8), 761-786. doi:10.1080/10408390902773003

Abdullaev, F. I., & Espinosa-Aguirre, J. J. (2004). Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detection and Prevention, 28(6), 426-432. doi:10.1016/j.cdp.2004.09.002

Zhang Z, Wang CZ, Wen XD, Shoyama Y, Yuan CS (2013) Role of saffron and its constituents on cancer chemoprevention. Pharm Biol.

Schmidt, M., Betti, G., & Hensel, A. (2007). Saffron in phytotherapy: Pharmacology and clinical uses. Wiener Medizinische Wochenschrift, 157(13-14), 315-319. doi:10.1007/s10354-007-0428-4

Howes, M.-J. R., & Perry, E. (2011). The Role of Phytochemicals in the Treatment and Prevention of Dementia. Drugs & Aging, 28(6), 439-468. doi:10.2165/11591310-000000000-00000

Castillo, R., Fernández, J.-A., & Gómez-Gómez, L. (2005). Implications of Carotenoid Biosynthetic Genes in Apocarotenoid Formation during the Stigma Development of Crocus sativus and Its Closer Relatives. Plant Physiology, 139(2), 674-689. doi:10.1104/pp.105.067827

Moraga, Á. R., Rambla, J. L., Ahrazem, O., Granell, A., & Gómez-Gómez, L. (2009). Metabolite and target transcript analyses during Crocus sativus stigma development. Phytochemistry, 70(8), 1009-1016. doi:10.1016/j.phytochem.2009.04.022

Rubio-Moraga, A., Trapero, A., Ahrazem, O., & Gómez-Gómez, L. (2010). Crocins transport in Crocus sativus: The long road from a senescent stigma to a newborn corm. Phytochemistry, 71(13), 1506-1513. doi:10.1016/j.phytochem.2010.05.026

Moraga, A. R., Nohales, P. F., P�rez, J. A. F., & G�mez-G�mez, L. (2004). Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta, 219(6), 955-966. doi:10.1007/s00425-004-1299-1

Harpke, D., Meng, S., Rutten, T., Kerndorff, H., & Blattner, F. R. (2013). Phylogeny of Crocus (Iridaceae) based on one chloroplast and two nuclear loci: Ancient hybridization and chromosome number evolution. Molecular Phylogenetics and Evolution, 66(3), 617-627. doi:10.1016/j.ympev.2012.10.007

Mathew B (1982) The crocus - A revision of the Genus crocus; Batsford B, editor. London.

Nørbæk, R., Nielsen, K., & Kondo, T. (2002). Anthocyanins from flowers of Cichorium intybus. Phytochemistry, 60(4), 357-359. doi:10.1016/s0031-9422(02)00055-9

Zhu, C., Bai, C., Sanahuja, G., Yuan, D., Farré, G., Naqvi, S., … Christou, P. (2010). The regulation of carotenoid pigmentation in flowers. Archives of Biochemistry and Biophysics, 504(1), 132-141. doi:10.1016/j.abb.2010.07.028

OHMIYA, A. (2011). Diversity of Carotenoid Composition in Flower Petals. Japan Agricultural Research Quarterly: JARQ, 45(2), 163-171. doi:10.6090/jarq.45.163

KISHIMOTO, S., MAOKA, T., SUMITOMO, K., & OHMIYA, A. (2005). Analysis of Carotenoid Composition in Petals of Calendula (Calendula officinalisL.). Bioscience, Biotechnology, and Biochemistry, 69(11), 2122-2128. doi:10.1271/bbb.69.2122

Ohmiya, A., Kishimoto, S., Aida, R., Yoshioka, S., & Sumitomo, K. (2006). Carotenoid Cleavage Dioxygenase (CmCCD4a) Contributes to White Color Formation in Chrysanthemum Petals. Plant Physiology, 142(3), 1193-1201. doi:10.1104/pp.106.087130

Ohmiya, A., Sumitomo, K., & Aida, R. (2009). «Yellow Jimba»: Suppression of Carotenoid Cleavage Dioxygenase (CmCCD4a) Expression Turns White Chrysanthemum Petals Yellow. Journal of the Japanese Society for Horticultural Science, 78(4), 450-455. doi:10.2503/jjshs1.78.450

Brandi, F., Bar, E., Mourgues, F., Horváth, G., Turcsi, E., Giuliano, G., … Rosati, C. (2011). Study of «Redhaven» peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biology, 11(1), 24. doi:10.1186/1471-2229-11-24

Campbell, R., Ducreux, L. J. M., Morris, W. L., Morris, J. A., Suttle, J. C., Ramsay, G., … Taylor, M. A. (2010). The Metabolic and Developmental Roles of Carotenoid Cleavage Dioxygenase4 from Potato. Plant Physiology, 154(2), 656-664. doi:10.1104/pp.110.158733

Ahrazem, O., Rubio-Moraga, A., Lopez, R. C., & Gomez-Gomez, L. (2009). The expression of a chromoplast-specific lycopene beta cyclase gene is involved in the high production of saffron’s apocarotenoid precursors. Journal of Experimental Botany, 61(1), 105-119. doi:10.1093/jxb/erp283

Ahrazem, O., Rubio-Moraga, A., Trapero, A., & Gomez-Gomez, L. (2011). Developmental and stress regulation of gene expression for a 9-cis-epoxycarotenoid dioxygenase, CstNCED, isolated from Crocus sativus stigmas. Journal of Experimental Botany, 63(2), 681-694. doi:10.1093/jxb/err293

Moraga, Á., Mozos, A., Ahrazem, O., & Gómez-Gómez, L. (2009). Cloning and characterization of a glucosyltransferase from Crocus sativus stigmas involved in flavonoid glucosylation. BMC Plant Biology, 9(1), 109. doi:10.1186/1471-2229-9-109

Tarantilis, P. A., Tsoupras, G., & Polissiou, M. (1995). Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography-UV-visible photodiode-array detection-mass spectrometry. Journal of Chromatography A, 699(1-2), 107-118. doi:10.1016/0021-9673(95)00044-n

Walter, M. H., Fester, T., & Strack, D. (2000). Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the «yellow pigment» and other apocarotenoids. The Plant Journal, 21(6), 571-578. doi:10.1046/j.1365-313x.2000.00708.x

Gómez-Miranda, B., Rupérez, P., & Leal, J. A. (1981). Changes in chemical composition during germination ofbotrytis cinerea sclerotia. Current Microbiology, 6(4), 243-246. doi:10.1007/bf01566981

Cooper, C. M., Davies, N. W., & Menary, R. C. (2003). C-27 Apocarotenoids in the Flowers ofBoronia megastigma(Nees). Journal of Agricultural and Food Chemistry, 51(8), 2384-2389. doi:10.1021/jf026007c

Floss, D. S., Schliemann, W., Schmidt, J., Strack, D., & Walter, M. H. (2008). RNA Interference-Mediated Repression of MtCCD1 in Mycorrhizal Roots of Medicago truncatula Causes Accumulation of C27 Apocarotenoids, Shedding Light on the Functional Role of CCD1. Plant Physiology, 148(3), 1267-1282. doi:10.1104/pp.108.125062

Fester, T., Schmidt, D., Lohse, S., Walter, M., Giuliano, G., Bramley, P., … Strack, D. (2002). Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots. Planta, 216(1), 148-154. doi:10.1007/s00425-002-0917-z

Klingner, A., Bothe, H., Wray, V., & Marner, F.-J. (1995). Identification of a yellow pigment formed in maize roots upon mycorrhizal colonization. Phytochemistry, 38(1), 53-55. doi:10.1016/0031-9422(94)00538-5

Rychener, M., Bigler, P., & Pfander, H. (1984). Isolierung und Strukturaufkl�rung von Neapolitanose (O-?-D-Glucopyranosyl-(1?2)-O-[?-D-glucopyranosyl-(1?6)]-(D-glucose), einem neuen Trisaccharid aus den Stempeln von Gartenkrokussen (Crocus neapolitanus var.). Helvetica Chimica Acta, 67(2), 386-391. doi:10.1002/hlca.19840670205

Lu, S., Van Eck, J., Zhou, X., Lopez, A. B., O’Halloran, D. M., Cosman, K. M., … Li, L. (2006). The Cauliflower Or Gene Encodes a DnaJ Cysteine-Rich Domain-Containing Protein That Mediates High Levels of β-Carotene Accumulation. The Plant Cell, 18(12), 3594-3605. doi:10.1105/tpc.106.046417

Rubio, A., Rambla, J. L., Santaella, M., Gómez, M. D., Orzaez, D., Granell, A., & Gómez-Gómez, L. (2008). Cytosolic and Plastoglobule-targeted Carotenoid Dioxygenases fromCrocus sativusAre Both Involved in β-Ionone Release. Journal of Biological Chemistry, 283(36), 24816-24825. doi:10.1074/jbc.m804000200

Dufresne, C., Cormier, F., & Dorion, S. (1997). In VitroFormation of Crocetin Glucosyl Esters byCrocus sativusCallus Extract. Planta Medica, 63(02), 150-153. doi:10.1055/s-2006-957633

Wakelin, A. M., Lister, C. E., & Conner, A. J. (2003). Inheritance and Biochemistry of Pollen Pigmentation in California Poppy (Eschscholzia californica Cham.). International Journal of Plant Sciences, 164(6), 867-875. doi:10.1086/378825

Cooper, C. M., Davies, N. W., & Menary, R. C. (2009). Changes in Some Carotenoids and Apocarotenoids during Flower Development in Boronia megastigma (Nees). Journal of Agricultural and Food Chemistry, 57(4), 1513-1520. doi:10.1021/jf802610p

Pfister, S., Meyer, P., Steck, A., & Pfander, H. (1996). Isolation and Structure Elucidation of Carotenoid−Glycosyl Esters in Gardenia Fruits (Gardenia jasminoidesEllis) and Saffron (CrocussativusLinne). Journal of Agricultural and Food Chemistry, 44(9), 2612-2615. doi:10.1021/jf950713e

Dufresne, C., Cormier, F., Dorion, S., Niggli, U. A., Pfister, S., & Pfander, H. (1999). Glycosylation of encapsulated crocetin by a Crocus sativus L. cell culture. Enzyme and Microbial Technology, 24(8-9), 453-462. doi:10.1016/s0141-0229(98)00143-4

Lundmark, M., Hurry, V., & Lapointe, L. (2009). Low temperature maximizes growth of Crocus vernus (L.) Hill via changes in carbon partitioning and corm development. Journal of Experimental Botany, 60(7), 2203-2213. doi:10.1093/jxb/erp103

Schliemann, W., Schmidt, J., Nimtz, M., Wray, V., Fester, T., & Strack, D. (2006). Accumulation of apocarotenoids in mycorrhizal roots of Ornithogalum umbellatum. Phytochemistry, 67(12), 1196-1205. doi:10.1016/j.phytochem.2006.05.005

Gómez-Gómez L, Moraga-Rubio A, Ahrazem O (2010) Understanding Carotenoid Metabolism in Saffron Stigmas: Unravelling Aroma and Colour Formation. In: Teixeira da Silva JA, editor. Functional Plant Science adn Biotechnology United Kingdon: GLOBAL SCIENCE BOOKS. pp.56–63.

Schwartz, S. H., Qin, X., & Zeevaart, J. A. D. (2001). Characterization of a Novel Carotenoid Cleavage Dioxygenase from Plants. Journal of Biological Chemistry, 276(27), 25208-25211. doi:10.1074/jbc.m102146200

Ilg, A., Yu, Q., Schaub, P., Beyer, P., & Al-Babili, S. (2010). Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta. Planta, 232(3), 691-699. doi:10.1007/s00425-010-1205-y

Almeida, E. R. A., & Cerdá-Olmedo, E. (2008). Gene expression in the regulation of carotene biosynthesis in Phycomyces. Current Genetics, 53(3), 129-137. doi:10.1007/s00294-007-0170-x

Kachanovsky, D. E., Filler, S., Isaacson, T., & Hirschberg, J. (2012). Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids. Proceedings of the National Academy of Sciences, 109(46), 19021-19026. doi:10.1073/pnas.1214808109

Walter, M. H., Floss, D. S., & Strack, D. (2010). Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta, 232(1), 1-17. doi:10.1007/s00425-010-1156-3

GIACCIO, M. (2004). Crocetin from Saffron: An Active Component of an Ancient Spice. Critical Reviews in Food Science and Nutrition, 44(3), 155-172. doi:10.1080/10408690490441433

Hosseinzadeh, H., & Nassiri-Asl, M. (2012). Avicenna’s (Ibn Sina) the Canon of Medicine and Saffron (Crocus sativus): A Review. Phytotherapy Research, 27(4), 475-483. doi:10.1002/ptr.4784

Ochiai, T., Shimeno, H., Mishima, K., Iwasaki, K., Fujiwara, M., Tanaka, H., … Soeda, S. (2007). Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochimica et Biophysica Acta (BBA) - General Subjects, 1770(4), 578-584. doi:10.1016/j.bbagen.2006.11.012

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem