- -

Wave Front Sets with respect to the Iterates of an Operator with Constant Coefficients

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Wave Front Sets with respect to the Iterates of an Operator with Constant Coefficients

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boiti, C. es_ES
dc.contributor.author Jornet Casanova, David es_ES
dc.contributor.author Juan Huguet, Jordi es_ES
dc.date.accessioned 2014-09-30T16:52:30Z
dc.date.available 2014-09-30T16:52:30Z
dc.date.issued 2014-05-08
dc.identifier.issn 1085-3375
dc.identifier.uri http://hdl.handle.net/10251/40478
dc.description.abstract We introduce the wave front set WF*P(u) with respect to the iterates of a hypoelliptic linear partial differential operator with constant coefficients of a classical distribution u is an element of D' (Omega) in an open set Omega in the setting of ultradifferentiable classes of Braun, Meise, and Taylor. We state a version of the microlocal regularity theorem of Hormander for this new type of wave front set and give some examples and applications of the former result. es_ES
dc.description.sponsorship The research of the first and the second authors was partially supported by Grants PRIN2008 (MIUR) and FAR2009 (University of Ferrara). The research of the second and third authors was partially supported by MEC and FEDER, Project MTM2010-15200. The research of the second author was partially supported by Programa de Apoyo a la Investigacion y Desarrollo de la UPV PAID-06-12. The first author is member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilita e le loro Applicazioni (GNAMPA) of the Instituto Nazionale di Alta Matematica (INdAM). en_EN
dc.language Español es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Abstract and Applied Analysis es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Partial-differential equations es_ES
dc.subject Non-quasianalytic classes es_ES
dc.subject Boundary values es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Wave Front Sets with respect to the Iterates of an Operator with Constant Coefficients es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2014/438716
dc.relation.projectID info:eu-repo/grantAgreement/UNIFE//FAR2009/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-15200/ES/METODOS DE ANALISIS FUNCIONAL PARA EL ANALISIS MATEMATICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-12/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Boiti, C.; Jornet Casanova, D.; Juan Huguet, J. (2014). Wave Front Sets with respect to the Iterates of an Operator with Constant Coefficients. Abstract and Applied Analysis. 2014:1-17. https://doi.org/10.1155/2014/438716 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2014/438716 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2014 es_ES
dc.relation.senia 265756
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Università degli Studi di Ferrara es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministero dell'Istruzione dell'Università e della Ricerca, Italia es_ES
dc.description.references Komatsu, H. (1960). A characterization of real analytic functions. Proceedings of the Japan Academy, 36(3), 90-93. doi:10.3792/pja/1195524081 es_ES
dc.description.references Newberger, E., & Ziele{źny, Z. (1973). The growth of hypoelliptic polynomials and Gevrey classes. Proceedings of the American Mathematical Society, 39(3), 547-547. doi:10.1090/s0002-9939-1973-0318660-6 es_ES
dc.description.references Métivier, G. (1978). Propriete des iteres et ellipticite. Communications in Partial Differential Equations, 3(9), 827-876. doi:10.1080/03605307808820078 es_ES
dc.description.references Langenbruch, M. (1979). P-Funktionale und Randwerte zu Hypoelliptischen Differentialoperatoren. Mathematische Annalen, 239(1), 55-74. doi:10.1007/bf01420493 es_ES
dc.description.references Langenbruch, M. (1985). On the functional dimension of solution spaces of hypoelliptic partial differential operators. Mathematische Annalen, 272(2), 217-229. doi:10.1007/bf01450566 es_ES
dc.description.references Bouzar, C., & Cha�li, R. (2001). Une g�n�ralisation du probl�me des it�r�s. Archiv der Mathematik, 76(1), 57-66. doi:10.1007/s000130050542 es_ES
dc.description.references Bouzar, C., & Chaili, R. (2003). Proceedings of the American Mathematical Society, 131(05), 1565-1573. doi:10.1090/s0002-9939-02-06799-0 es_ES
dc.description.references Calvo, D., & Rodino, L. (2011). Iterates of operators and Gelfand–Shilov classes. Integral Transforms and Special Functions, 22(4-5), 269-276. doi:10.1080/10652469.2010.541037 es_ES
dc.description.references Juan-Huguet, J. (2010). Iterates and Hypoellipticity of Partial Differential Operators on Non-Quasianalytic Classes. Integral Equations and Operator Theory, 68(2), 263-286. doi:10.1007/s00020-010-1816-5 es_ES
dc.description.references Braun, R. W., Meise, R., & Taylor, B. A. (1990). Ultradifferentiable functions and Fourier analysis. Results in Mathematics, 17(3-4), 206-237. doi:10.1007/bf03322459 es_ES
dc.description.references Juan-Huguet, J. (2012). A Paley–Wiener type theorem for generalized non-quasianalytic classes. Studia Mathematica, 208(1), 31-46. doi:10.4064/sm208-1-3 es_ES
dc.description.references Hörmander, L. (1971). Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients. Communications on Pure and Applied Mathematics, 24(5), 671-704. doi:10.1002/cpa.3160240505 es_ES
dc.description.references Albanese, A. A., Jornet, D., & Oliaro, A. (2010). Quasianalytic Wave Front Sets for Solutions of Linear Partial Differential Operators. Integral Equations and Operator Theory, 66(2), 153-181. doi:10.1007/s00020-010-1742-6 es_ES
dc.description.references Albanese, A. A., Jornet, D., & Oliaro, A. (2011). Wave front sets for ultradistribution solutions of linear partial differential operators with coefficients in non-quasianalytic classes. Mathematische Nachrichten, 285(4), 411-425. doi:10.1002/mana.201010039 es_ES
dc.description.references Fernández, C., Galbis, A., & Jornet, D. (2008). Pseudodifferential operators of Beurling type and the wave front set. Journal of Mathematical Analysis and Applications, 340(2), 1153-1170. doi:10.1016/j.jmaa.2007.09.035 es_ES
dc.description.references Hörmander, L. (1958). On interior regularity of the solutions of partial differential equations. Communications on Pure and Applied Mathematics, 11(2), 197-218. doi:10.1002/cpa.3160110205 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem