Komatsu, H. (1960). A characterization of real analytic functions. Proceedings of the Japan Academy, 36(3), 90-93. doi:10.3792/pja/1195524081
Newberger, E., & Ziele{źny, Z. (1973). The growth of hypoelliptic polynomials and Gevrey classes. Proceedings of the American Mathematical Society, 39(3), 547-547. doi:10.1090/s0002-9939-1973-0318660-6
Métivier, G. (1978). Propriete des iteres et ellipticite. Communications in Partial Differential Equations, 3(9), 827-876. doi:10.1080/03605307808820078
[+]
Komatsu, H. (1960). A characterization of real analytic functions. Proceedings of the Japan Academy, 36(3), 90-93. doi:10.3792/pja/1195524081
Newberger, E., & Ziele{źny, Z. (1973). The growth of hypoelliptic polynomials and Gevrey classes. Proceedings of the American Mathematical Society, 39(3), 547-547. doi:10.1090/s0002-9939-1973-0318660-6
Métivier, G. (1978). Propriete des iteres et ellipticite. Communications in Partial Differential Equations, 3(9), 827-876. doi:10.1080/03605307808820078
Langenbruch, M. (1979). P-Funktionale und Randwerte zu Hypoelliptischen Differentialoperatoren. Mathematische Annalen, 239(1), 55-74. doi:10.1007/bf01420493
Langenbruch, M. (1985). On the functional dimension of solution spaces of hypoelliptic partial differential operators. Mathematische Annalen, 272(2), 217-229. doi:10.1007/bf01450566
Bouzar, C., & Cha�li, R. (2001). Une g�n�ralisation du probl�me des it�r�s. Archiv der Mathematik, 76(1), 57-66. doi:10.1007/s000130050542
Bouzar, C., & Chaili, R. (2003). Proceedings of the American Mathematical Society, 131(05), 1565-1573. doi:10.1090/s0002-9939-02-06799-0
Calvo, D., & Rodino, L. (2011). Iterates of operators and Gelfand–Shilov classes. Integral Transforms and Special Functions, 22(4-5), 269-276. doi:10.1080/10652469.2010.541037
Juan-Huguet, J. (2010). Iterates and Hypoellipticity of Partial Differential Operators on Non-Quasianalytic Classes. Integral Equations and Operator Theory, 68(2), 263-286. doi:10.1007/s00020-010-1816-5
Braun, R. W., Meise, R., & Taylor, B. A. (1990). Ultradifferentiable functions and Fourier analysis. Results in Mathematics, 17(3-4), 206-237. doi:10.1007/bf03322459
Juan-Huguet, J. (2012). A Paley–Wiener type theorem for generalized non-quasianalytic classes. Studia Mathematica, 208(1), 31-46. doi:10.4064/sm208-1-3
Hörmander, L. (1971). Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients. Communications on Pure and Applied Mathematics, 24(5), 671-704. doi:10.1002/cpa.3160240505
Albanese, A. A., Jornet, D., & Oliaro, A. (2010). Quasianalytic Wave Front Sets for Solutions of Linear Partial Differential Operators. Integral Equations and Operator Theory, 66(2), 153-181. doi:10.1007/s00020-010-1742-6
Albanese, A. A., Jornet, D., & Oliaro, A. (2011). Wave front sets for ultradistribution solutions of linear partial differential operators with coefficients in non-quasianalytic classes. Mathematische Nachrichten, 285(4), 411-425. doi:10.1002/mana.201010039
Fernández, C., Galbis, A., & Jornet, D. (2008). Pseudodifferential operators of Beurling type and the wave front set. Journal of Mathematical Analysis and Applications, 340(2), 1153-1170. doi:10.1016/j.jmaa.2007.09.035
Hörmander, L. (1958). On interior regularity of the solutions of partial differential equations. Communications on Pure and Applied Mathematics, 11(2), 197-218. doi:10.1002/cpa.3160110205
[-]